The arithmetic of continuous Z-numbers

In order to deal with imprecision and partial reliability of real-world information, Prof. Zadeh suggested the concept of a Z-number Z=(A, B), as an ordered pair of continuous fuzzy numbers A and B. The first describes a linguistic value, and the second one is the associated reliability. Unfortunate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 373; S. 441 - 460
Hauptverfasser: Aliev, R.A., Huseynov, O.H., Zeinalova, L.M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 10.12.2016
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to deal with imprecision and partial reliability of real-world information, Prof. Zadeh suggested the concept of a Z-number Z=(A, B), as an ordered pair of continuous fuzzy numbers A and B. The first describes a linguistic value, and the second one is the associated reliability. Unfortunately, up to day there is no works devoted to arithmetic of continuous Z-numbers in existence. An original formulation of operations over continuous Z-numbers proposed by Zadeh includes complex non-linear variational problems. We propose an alternative approach which has a better computational complexity and accuracy tradeoff. The proposed approach is based on linear programming and other simple optimization problems. We developed basic arithmetic operations such as addition, subtraction, multiplication and division, and some algebraic operations as maximum, minimum, square and square root of continuous Z-numbers. Vast compendium of examples shows validity of the suggested approach.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2016.08.078