Obtaining split graphs by edge contraction

We study the parameterized complexity of the following Split Contraction problem: Given a graph G, and an integer k as parameter, determine whether G can be modified into a split graph by contracting at most k edges. We show that Split Contraction can be solved in FPT time 2O(k2)n5, but admits no po...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 607; pp. 60 - 67
Main Authors: Guo, Chengwei, Cai, Leizhen
Format: Journal Article
Language:English
Published: Elsevier B.V 23.11.2015
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the parameterized complexity of the following Split Contraction problem: Given a graph G, and an integer k as parameter, determine whether G can be modified into a split graph by contracting at most k edges. We show that Split Contraction can be solved in FPT time 2O(k2)n5, but admits no polynomial kernel unless NP⊆coNP/poly.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2015.01.056