Obtaining split graphs by edge contraction
We study the parameterized complexity of the following Split Contraction problem: Given a graph G, and an integer k as parameter, determine whether G can be modified into a split graph by contracting at most k edges. We show that Split Contraction can be solved in FPT time 2O(k2)n5, but admits no po...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 607; s. 60 - 67 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
23.11.2015
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the parameterized complexity of the following Split Contraction problem: Given a graph G, and an integer k as parameter, determine whether G can be modified into a split graph by contracting at most k edges. We show that Split Contraction can be solved in FPT time 2O(k2)n5, but admits no polynomial kernel unless NP⊆coNP/poly. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2015.01.056 |