On the variational problem for upper tails in sparse random graphs
What is the probability that the number of triangles in Gn,p, the Erdős‐Rényi random graph with edge density p, is at least twice its mean? Writing it as exp[−r(n,p)], already the order of the rate function r(n, p) was a longstanding open problem when p = o(1), finally settled in 2012 by Chatterjee...
Uložené v:
| Vydané v: | Random structures & algorithms Ročník 50; číslo 3; s. 420 - 436 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.05.2017
|
| Predmet: | |
| ISSN: | 1042-9832, 1098-2418 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!