Numerical analysis of a dual‐phase‐lag model involving two temperatures
In this paper, we numerically analyse a phase‐lag model with two temperatures which arises in the heat conduction theory. The model is written as a linear partial differential equation of third order in time. The variational formulation, written in terms of the thermal acceleration, leads to a linea...
Uloženo v:
| Vydáno v: | Mathematical methods in the applied sciences Ročník 43; číslo 5; s. 2759 - 2771 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Freiburg
Wiley Subscription Services, Inc
30.03.2020
|
| Témata: | |
| ISSN: | 0170-4214, 1099-1476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we numerically analyse a phase‐lag model with two temperatures which arises in the heat conduction theory. The model is written as a linear partial differential equation of third order in time. The variational formulation, written in terms of the thermal acceleration, leads to a linear variational equation, for which we recall an existence and uniqueness result and an energy decay property. Then, using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives, fully discrete approximations are introduced. A discrete stability property is proved, and a priori error estimates are obtained, from which the linear convergence of the approximation is derived. Finally, some one‐dimensional numerical simulations are described to demonstrate the accuracy of the approximation and the behaviour of the solution. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.6082 |