Neumann–Neumann waveform relaxation algorithm in multiple subdomains for hyperbolic problems in 1D and 2D
We present a Waveform Relaxation (WR) version of the Neumann–Neumann algorithm for the wave equation in space‐time. The method is based on a nonoverlapping spatial domain decomposition, and the iteration involves subdomain solves in space‐time with corresponding interface conditions, followed by a c...
Uložené v:
| Vydané v: | Numerical methods for partial differential equations Ročník 33; číslo 2; s. 514 - 530 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Wiley Subscription Services, Inc
01.03.2017
|
| Predmet: | |
| ISSN: | 0749-159X, 1098-2426 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a Waveform Relaxation (WR) version of the Neumann–Neumann algorithm for the wave equation in space‐time. The method is based on a nonoverlapping spatial domain decomposition, and the iteration involves subdomain solves in space‐time with corresponding interface conditions, followed by a correction step. Using a Fourier‐Laplace transform argument, for a particular relaxation parameter, we prove convergence of the algorithm in a finite number of steps for the finite time intervals. The number of steps depends on the size of the subdomains and the time window length on which the algorithm is employed. We illustrate the performance of the algorithm with numerical results, followed by a comparison with classical and optimized Schwarz WR methods. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 514–530, 2017 |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0749-159X 1098-2426 |
| DOI: | 10.1002/num.22112 |