A polynomial-time algorithm for computing a Pareto optimal and almost proportional allocation

We consider fair allocation of indivisible items under additive utilities. We show that there exists a strongly polynomial-time algorithm that always computes an allocation satisfying Pareto optimality and proportionality up to one item even if the utilities are mixed and the agents have asymmetric...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 48; číslo 5; s. 573 - 578
Hlavní autoři: Aziz, Haris, Moulin, Hervé, Sandomirskiy, Fedor
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2020
Témata:
ISSN:0167-6377, 1872-7468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider fair allocation of indivisible items under additive utilities. We show that there exists a strongly polynomial-time algorithm that always computes an allocation satisfying Pareto optimality and proportionality up to one item even if the utilities are mixed and the agents have asymmetric weights. The result does not hold if either of Pareto optimality or PROP1 is replaced with slightly stronger concepts.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2020.07.005