DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs

This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Exis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 62; číslo 10; s. 4980 - 4993
Hlavní autori: Chenguang Xi, Khan, Usman A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2017
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Existing algorithms solve the problem restricted to directed graphs with convergence √ rates of O(ln k/ √k) for general convex objective functions and O(ln k/k) when the objective functions are strongly convex, where k is the number of iterations. We show that, with the appropriate step-size, DEXTRA converges at a linear rate O(τ k ) for 0 <; τ <; 1, given that the objective functions are restricted strongly convex. The implementation of DEXTRA requires each agent to know its local out-degree. Simulation examples further illustrate our findings.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2672698