A Hybrid Deep Learning and Model Predictive Control Framework for Wind Farm Frequency Regulation
To enhance wind farm frequency regulation in renewable-dominant power systems, this paper proposes a bi-level hybrid framework integrating deep learning and model predictive control (MPC) by retaining the critical wake propagation delay while neglecting higher-order turbulence effects. The upper lay...
Uloženo v:
| Vydáno v: | Sustainability Ročník 17; číslo 18; s. 8445 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2025
|
| Témata: | |
| ISSN: | 2071-1050, 2071-1050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To enhance wind farm frequency regulation in renewable-dominant power systems, this paper proposes a bi-level hybrid framework integrating deep learning and model predictive control (MPC) by retaining the critical wake propagation delay while neglecting higher-order turbulence effects. The upper layer employs a synthetic inertial intelligent control strategy based on contractive autoencoder (CAE) and deep neural network (DNN). Particle swarm optimization (PSO) obtains optimal synthetic inertial parameters for dataset construction, CAE extracts features from multi-dimensional inputs, and DNN outputs optimal coefficients to determine the total power deficit the wind farm needs to supply. The lower layer uses a nonlinear model predictive control (NMPC) strategy with the discretized rotor motion equation as the prediction model and optimization under constraints to allocate the total power deficit to each turbine. MATLAB/Simulink case studies show that, compared with fixed-coefficient synthetic inertial control, the proposed framework raises the frequency nadir by 0.01–0.02 Hz, shortens the settling time by over 200 s under 2–4% load disturbances, and maintains rotor speed within the safe range. This work significantly enhances the wind farm’s frequency regulation performance, contributing to power system and energy sustainability. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2071-1050 2071-1050 |
| DOI: | 10.3390/su17188445 |