A Hybrid Deep Learning and Model Predictive Control Framework for Wind Farm Frequency Regulation

To enhance wind farm frequency regulation in renewable-dominant power systems, this paper proposes a bi-level hybrid framework integrating deep learning and model predictive control (MPC) by retaining the critical wake propagation delay while neglecting higher-order turbulence effects. The upper lay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability Jg. 17; H. 18; S. 8445
Hauptverfasser: Ji, Ziyang, Zhang, Jie, Du, Keke, Zhou, Tao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2025
Schlagworte:
ISSN:2071-1050, 2071-1050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enhance wind farm frequency regulation in renewable-dominant power systems, this paper proposes a bi-level hybrid framework integrating deep learning and model predictive control (MPC) by retaining the critical wake propagation delay while neglecting higher-order turbulence effects. The upper layer employs a synthetic inertial intelligent control strategy based on contractive autoencoder (CAE) and deep neural network (DNN). Particle swarm optimization (PSO) obtains optimal synthetic inertial parameters for dataset construction, CAE extracts features from multi-dimensional inputs, and DNN outputs optimal coefficients to determine the total power deficit the wind farm needs to supply. The lower layer uses a nonlinear model predictive control (NMPC) strategy with the discretized rotor motion equation as the prediction model and optimization under constraints to allocate the total power deficit to each turbine. MATLAB/Simulink case studies show that, compared with fixed-coefficient synthetic inertial control, the proposed framework raises the frequency nadir by 0.01–0.02 Hz, shortens the settling time by over 200 s under 2–4% load disturbances, and maintains rotor speed within the safe range. This work significantly enhances the wind farm’s frequency regulation performance, contributing to power system and energy sustainability.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2071-1050
2071-1050
DOI:10.3390/su17188445