A primal–dual approximation algorithm for the vertex cover P 3 problem
We introduce the vertex cover P n ( V C P n ) problem, that is, the problem of finding a minimum weight set F ⊂ V such that the graph G [ V − F ] has no P n , where P n is a path with n vertices. The problem also has its application background. In this paper, we first show that the V C P n problem i...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 412; číslo 50; s. 7044 - 7048 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
25.11.2011
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce the
vertex cover
P
n
(
V
C
P
n
) problem, that is, the problem of finding a minimum weight set
F
⊂
V
such that the graph
G
[
V
−
F
]
has no
P
n
, where
P
n
is a path with
n
vertices. The problem also has its application background. In this paper, we first show that the
V
C
P
n
problem is NP-hard for any integer
n
≥
2
. Then we restrict our attention to the
V
C
P
3
problem and give a 2-approximation algorithm using the primal–dual method. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2011.09.013 |