Optimally-designed single fiber Bragg grating filter scheme for RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion

We investigate return-to-zero (RZ) to non-return-to-zero (NRZ) format conversion by means of the linear time-invariant system theory. It is shown that the problem of converting random RZ stream to NRZ stream can be reduced to constructing an appropriate transfer function for the linear filter. This...

Full description

Saved in:
Bibliographic Details
Published in:Optics express Vol. 22; no. 25; p. 30442
Main Authors: Cao, Hui, Shu, Xuewen, Atai, Javid, Gbadebo, Adenowo, Xiong, Bangyun, Fan, Ting, Tang, HaiShu, Yang, Weili, Yu, Yu
Format: Journal Article
Language:English
Published: United States 15.12.2014
ISSN:1094-4087, 1094-4087
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate return-to-zero (RZ) to non-return-to-zero (NRZ) format conversion by means of the linear time-invariant system theory. It is shown that the problem of converting random RZ stream to NRZ stream can be reduced to constructing an appropriate transfer function for the linear filter. This approach is then used to propose novel optimally-designed single fiber Bragg grating (FBG) filter scheme for RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion. The spectral response of the FBG is designed according to the optical spectra of the algebraic difference between isolated NRZ and RZ pulses, and the filter order is optimized for the maximum Q-factor of the output NRZ signals. Experimental results as well as simulations show that such an optimally-designed FBG can successfully perform RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.22.030442