Self-Triggered Model Predictive Control for Nonlinear Input-Affine Dynamical Systems via Adaptive Control Samples Selection

In this paper, we propose a self-triggered formulation of model predictive control for continuous-time nonlinear input-affine networked control systems. Our control method specifies not only when to execute control tasks but also provides a way to discretize the optimal control trajectory into sever...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 62; číslo 1; s. 177 - 189
Hlavní autoři: Hashimoto, Kazumune, Adachi, Shuichi, Dimarogonas, Dimos V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a self-triggered formulation of model predictive control for continuous-time nonlinear input-affine networked control systems. Our control method specifies not only when to execute control tasks but also provides a way to discretize the optimal control trajectory into several control samples, so that the reduction of communication load will be obtained. Stability analysis under the sample-and-hold implementation is also given, which guarantees that the state converges to a terminal region where the system can be stabilized by a local state feedback controller. Some simulation examples validate our proposed framework.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
1558-2523
DOI:10.1109/TAC.2016.2537741