Self-Triggered Model Predictive Control for Nonlinear Input-Affine Dynamical Systems via Adaptive Control Samples Selection
In this paper, we propose a self-triggered formulation of model predictive control for continuous-time nonlinear input-affine networked control systems. Our control method specifies not only when to execute control tasks but also provides a way to discretize the optimal control trajectory into sever...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 62; číslo 1; s. 177 - 189 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9286, 1558-2523, 1558-2523 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a self-triggered formulation of model predictive control for continuous-time nonlinear input-affine networked control systems. Our control method specifies not only when to execute control tasks but also provides a way to discretize the optimal control trajectory into several control samples, so that the reduction of communication load will be obtained. Stability analysis under the sample-and-hold implementation is also given, which guarantees that the state converges to a terminal region where the system can be stabilized by a local state feedback controller. Some simulation examples validate our proposed framework. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 1558-2523 |
| DOI: | 10.1109/TAC.2016.2537741 |