Self-Triggered Model Predictive Control for Nonlinear Input-Affine Dynamical Systems via Adaptive Control Samples Selection
In this paper, we propose a self-triggered formulation of model predictive control for continuous-time nonlinear input-affine networked control systems. Our control method specifies not only when to execute control tasks but also provides a way to discretize the optimal control trajectory into sever...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automatic control Jg. 62; H. 1; S. 177 - 189 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9286, 1558-2523, 1558-2523 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we propose a self-triggered formulation of model predictive control for continuous-time nonlinear input-affine networked control systems. Our control method specifies not only when to execute control tasks but also provides a way to discretize the optimal control trajectory into several control samples, so that the reduction of communication load will be obtained. Stability analysis under the sample-and-hold implementation is also given, which guarantees that the state converges to a terminal region where the system can be stabilized by a local state feedback controller. Some simulation examples validate our proposed framework. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 1558-2523 |
| DOI: | 10.1109/TAC.2016.2537741 |