Self-Triggered Model Predictive Control for Nonlinear Input-Affine Dynamical Systems via Adaptive Control Samples Selection

In this paper, we propose a self-triggered formulation of model predictive control for continuous-time nonlinear input-affine networked control systems. Our control method specifies not only when to execute control tasks but also provides a way to discretize the optimal control trajectory into sever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 62; H. 1; S. 177 - 189
Hauptverfasser: Hashimoto, Kazumune, Adachi, Shuichi, Dimarogonas, Dimos V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a self-triggered formulation of model predictive control for continuous-time nonlinear input-affine networked control systems. Our control method specifies not only when to execute control tasks but also provides a way to discretize the optimal control trajectory into several control samples, so that the reduction of communication load will be obtained. Stability analysis under the sample-and-hold implementation is also given, which guarantees that the state converges to a terminal region where the system can be stabilized by a local state feedback controller. Some simulation examples validate our proposed framework.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
1558-2523
DOI:10.1109/TAC.2016.2537741