Degree distributions in networks: Beyond the power law
The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold nee...
Gespeichert in:
| Veröffentlicht in: | Statistica Neerlandica Jg. 78; H. 4; S. 702 - 718 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.11.2024
|
| Schlagworte: | |
| ISSN: | 0039-0402, 1467-9574 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold needs to be preselected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data could have come from the power law. We propose a modeling framework that combines two different generalizations of the power law, namely the generalized Pareto distribution and the Zipf‐polylog distribution, to resolve these issues. The proposed mixture distributions are shown to fit the data well and quantify the threshold uncertainty in a natural way. A model selection step embedded in the Bayesian inference algorithm further answers the question whether the power law is adequate. |
|---|---|
| AbstractList | The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold needs to be preselected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data could have come from the power law. We propose a modeling framework that combines two different generalizations of the power law, namely the generalized Pareto distribution and the Zipf‐polylog distribution, to resolve these issues. The proposed mixture distributions are shown to fit the data well and quantify the threshold uncertainty in a natural way. A model selection step embedded in the Bayesian inference algorithm further answers the question whether the power law is adequate. |
| Author | Farrell, Aiden Lee, Clement Eastoe, Emma F. |
| Author_xml | – sequence: 1 givenname: Clement orcidid: 0000-0003-1785-8671 surname: Lee fullname: Lee, Clement email: clement.lee@newcastle.ac.uk organization: Newcastle University – sequence: 2 givenname: Emma F. surname: Eastoe fullname: Eastoe, Emma F. organization: Lancaster University – sequence: 3 givenname: Aiden surname: Farrell fullname: Farrell, Aiden organization: Lancaster University |
| BookMark | eNp9kMtOwzAQRS1UJNrChi-wxA4pxeNHUrMr5SlVsKCsLSeeQkqxi50q6t-TEtbMZmZx5l7pjMjAB4-EnAObQDdXqbF-AlwodUSGIPMi06qQAzJkTOiMScZPyCilNWNQaJkPSX6L7xGRujo1sS53TR18orWnHps2xM90TW9wH7yjzQfSbWgx0o1tT8nxym4Snv3tMXm7v1vOH7PFy8PTfLbIKsG1yiqlpXCiwLzUCFqXvLIAhRMVyzlIxVwJYLWYrqaqu5yTEnOFPOelLUWlxZhc9LnbGL53mBqzDrvou0ojgGsuJJ9CR132VBVDShFXZhvrLxv3Bpg5eDEHL-bXSwdDD7f1Bvf_kOZ1OXvuf34AxKNl0Q |
| Cites_doi | 10.1214/17-AOAS1081 10.1007/s10687-011-0137-7 10.1126/science.1216142 10.1038/43601 10.1103/PhysRevResearch.1.033034 10.1126/science.286.5439.509 10.18637/jss.v064.i02 10.1080/00107510500052444 10.1371/journal.pone.0228713 10.1177/0022002714530430 10.1007/978-1-4471-3675-0 10.1007/978-3-319-13191-7_4 10.1093/bioinformatics/bts372 10.3390/e23050502 10.1214/17-AOAS1082 10.1016/j.joi.2014.09.011 10.1016/j.physa.2022.127680 10.18637/jss.v084.i05 10.1073/pnas.0501179102 10.1098/rstb.1925.0002 10.1214/aos/1176343003 10.1145/3041021.3053903 10.1016/j.aap.2014.05.005 10.1038/nature08631 10.1002/0471715816 10.1016/j.physa.2022.127588 10.1137/070710111 10.1098/rspa.2019.0742 10.1080/00401706.2024.2421744 10.1214/14-AAP1053 10.1080/01621459.1995.10476572 10.1214/009053604000001147 10.1111/j.2517-6161.1995.tb02042.x 10.1007/978-3-319-20591-5_29 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Netherlands Society for Statistics and Operations Research. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Netherlands Society for Statistics and Operations Research. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1111/stan.12355 |
| DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1467-9574 |
| EndPage | 718 |
| ExternalDocumentID | 10_1111_stan_12355 STAN12355 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29Q 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AIAGR AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EJD EMK EST ESX F00 F01 F04 F5P FEDTE FSPIC G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS U5U UB1 V8K W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION O8X 7SC 8FD H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3295-c5943d37e6b9e199b2ca117d3c0621450db11a938f85b11dd44e65e262bab3c93 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001273989400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0039-0402 |
| IngestDate | Wed Aug 13 08:39:29 EDT 2025 Sat Nov 29 06:38:02 EST 2025 Wed Jan 22 17:12:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3295-c5943d37e6b9e199b2ca117d3c0621450db11a938f85b11dd44e65e262bab3c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1785-8671 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fstan.12355 |
| PQID | 3129234281 |
| PQPubID | 30850 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3129234281 crossref_primary_10_1111_stan_12355 wiley_primary_10_1111_stan_12355_STAN12355 |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 2024-11-00 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Statistica Neerlandica |
| PublicationYear | 2024 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2015; 59 2021; 23 1995; 90 2019; 10 2019; 1 1995; 57 1999; 286 2020; 15 2005 2018; 84 2012; 15 1925; 213 1999; 401 1976; 27 2012; 10 2005; 46 1999 2015; 25 2018; 8 2009; 51 2001 2023 2005; 102 2015; 64 2017; 11 2009; 462 2017 2012; 28 2015 2014 2020; 476 2013 2018; 12 2022; 603 2022; 604 2012; 335 2014; 8 2014; 71 2005; 33 1975; 3 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 Kunegis J. (e_1_2_8_24_1) 2013 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 Scarrott C. (e_1_2_8_34_1) 2012; 10 e_1_2_8_23_1 Sheridan P. (e_1_2_8_35_1) 2018; 8 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Broido A. D. (e_1_2_8_9_1) 2019; 10 Price D. (e_1_2_8_31_1) 1976; 27 Faloutsos M. (e_1_2_8_13_1) 1999 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 462 start-page: 911 issue: 7275 year: 2009 end-page: 914 article-title: Common ecology quantifies human insurgency publication-title: Nature – volume: 15 start-page: 299 year: 2012 end-page: 317 article-title: Discretization of distributions in the maximum domain of attraction publication-title: Extremes – volume: 286 start-page: 509 issue: 5439 year: 1999 end-page: 512 article-title: Emergence of scaling in random networks publication-title: Science – year: 2005 – volume: 23 issue: 5 year: 2021 article-title: A mixture model of truncated zeta distributions with applications to scientific collaboration networks publication-title: Entropy – volume: 71 start-page: 38 year: 2014 end-page: 49 article-title: Modelling road accident blackspots data with the discrete generalized Pareto distribution publication-title: Accident Analysis and Prevention – volume: 603 year: 2022 article-title: The Zipf‐Polylog distribution: Modeling human interactions through social networks publication-title: Physica A – year: 2001 – volume: 476 issue: 2241 year: 2020 article-title: How rare are power‐law networks really? publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 25 start-page: 2462 issue: 5 year: 2015 end-page: 2502 article-title: Twitter event networks and the superstar model publication-title: The Annals of Applied Probability – volume: 46 start-page: 323 issue: 5 year: 2005 end-page: 351 article-title: Power laws, Pareto distributions and Zipf's law publication-title: Contemporary Physics – volume: 57 start-page: 473 issue: 3 year: 1995 end-page: 484 article-title: Bayesian model choice via Markov chain Monte Carlo methods publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 33 start-page: 730 issue: 2 year: 2005 end-page: 773 article-title: Spike and slab variable selection: Frequentist and Bayesian strategies publication-title: The Annals of Statistics – volume: 15 issue: 2 year: 2020 article-title: Science through Wikipedia: A novel representation of open knowledge through co‐citation networks publication-title: PLoS One – volume: 90 start-page: 773 issue: 430 year: 1995 end-page: 795 article-title: Bayes factors publication-title: Journal of the American Statistical Association – volume: 11 start-page: 2357 issue: 4 year: 2017 end-page: 2374 article-title: Estimating the number of casualties in the American Indian war: A Bayesian analysis using the power law distribution publication-title: Annals of Applied Statistics – volume: 10 issue: 1017 year: 2019 article-title: Scale‐free networks are rare publication-title: Nature Communications – year: 2014 – volume: 3 start-page: 119 issue: 1 year: 1975 end-page: 131 article-title: Statistical inference using extreme order statistics publication-title: The Annals of Statistics – volume: 8 issue: 2811 year: 2018 article-title: A preferential attachment paradox: How preferential attachment combines with growth to produce networks with log‐normal in‐degree distributions publication-title: Scientific Reports – volume: 213 start-page: 21 issue: 402‐410 year: 1925 end-page: 87 article-title: II.‐A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F. R. S publication-title: Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character – volume: 51 start-page: 661 issue: 4 year: 2009 end-page: 703 article-title: Power‐law distributions in empirical data publication-title: SIAM Review – volume: 604 year: 2022 article-title: Random processes with high variance produce scale free networks publication-title: Physica A – volume: 28 start-page: i562 issue: 18 year: 2012 end-page: i568 article-title: An approach to describing and analysing bulk biological annotation quality: A case study using UniProtKB publication-title: Bioinformatics – volume: 64 start-page: 1 issue: 2 year: 2015 end-page: 16 article-title: Fitting heavy tailed distributions: The poweRlaw package publication-title: Journal of Statistical Software – volume: 27 start-page: 292 issue: 5 year: 1976 end-page: 306 article-title: A general theory of bibliometric and other cumulative advantage processes publication-title: Journal of the Association for Information Science and Technology – volume: 1 year: 2019 article-title: Scale‐free networks well done publication-title: Physical Review Research – year: 2023 – volume: 401 start-page: 130 year: 1999 end-page: 131 article-title: Internet: Diameter of the world‐wide web publication-title: Nature – start-page: 251 year: 1999 end-page: 262 – volume: 8 start-page: 963 year: 2014 end-page: 971 article-title: Regression for citation data: An evaluation of different methods publication-title: Journal of Infometrics – year: 2017 – start-page: 1493 year: 2017 end-page: 1498 – start-page: 1343 year: 2013 end-page: 1350 – volume: 12 start-page: 246 issue: 1 year: 2018 end-page: 282 article-title: Extreme value modelling of water‐related insurance claims publication-title: The Annals of Applied Statistics – volume: 10 start-page: 33 issue: 1 year: 2012 end-page: 60 article-title: A review of extreme value threshold estimation and uncertainty quantification publication-title: REVSTAT – Statistical Journal – volume: 59 start-page: 1216 year: 2015 end-page: 1241 article-title: Using power laws to estimate conflict size publication-title: Journal of Conflict Resolution – volume: 84 start-page: 1 issue: 5 year: 2018 end-page: 27 article-title: Evmix: An R package for extreme value mixture modeling, threshold estimation and boundary corrected kernel density estimation publication-title: Journal of Statistical Software – volume: 335 start-page: 665 issue: 6069 year: 2012 end-page: 666 article-title: Critical truths about power laws publication-title: Science – volume: 102 start-page: 4221 issue: 12 year: 2005 end-page: 4224 article-title: Subnets of scale‐free networks are not scale‐free: Sampling properties of networks publication-title: Proceedings of the National Academy of Sciences – start-page: 323 year: 2015 end-page: 333 – ident: e_1_2_8_33_1 doi: 10.1214/17-AOAS1081 – ident: e_1_2_8_36_1 doi: 10.1007/s10687-011-0137-7 – ident: e_1_2_8_37_1 doi: 10.1126/science.1216142 – ident: e_1_2_8_2_1 doi: 10.1038/43601 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevResearch.1.033034 – ident: e_1_2_8_5_1 doi: 10.1126/science.286.5439.509 – ident: e_1_2_8_15_1 doi: 10.18637/jss.v064.i02 – ident: e_1_2_8_29_1 doi: 10.1080/00107510500052444 – ident: e_1_2_8_3_1 doi: 10.1371/journal.pone.0228713 – ident: e_1_2_8_14_1 doi: 10.1177/0022002714530430 – ident: e_1_2_8_17_1 – start-page: 1343 volume-title: Proceedings of the international conference on world wide web companion year: 2013 ident: e_1_2_8_24_1 – ident: e_1_2_8_12_1 doi: 10.1007/978-1-4471-3675-0 – ident: e_1_2_8_26_1 doi: 10.1007/978-3-319-13191-7_4 – ident: e_1_2_8_25_1 – ident: e_1_2_8_6_1 doi: 10.1093/bioinformatics/bts372 – ident: e_1_2_8_22_1 doi: 10.3390/e23050502 – ident: e_1_2_8_16_1 doi: 10.1214/17-AOAS1082 – ident: e_1_2_8_39_1 doi: 10.1016/j.joi.2014.09.011 – volume: 10 start-page: 33 issue: 1 year: 2012 ident: e_1_2_8_34_1 article-title: A review of extreme value threshold estimation and uncertainty quantification publication-title: REVSTAT – Statistical Journal – ident: e_1_2_8_40_1 doi: 10.1016/j.physa.2022.127680 – ident: e_1_2_8_18_1 doi: 10.18637/jss.v084.i05 – ident: e_1_2_8_38_1 doi: 10.1073/pnas.0501179102 – ident: e_1_2_8_43_1 doi: 10.1098/rstb.1925.0002 – ident: e_1_2_8_30_1 doi: 10.1214/aos/1176343003 – volume: 10 issue: 1017 year: 2019 ident: e_1_2_8_9_1 article-title: Scale‐free networks are rare publication-title: Nature Communications – ident: e_1_2_8_27_1 doi: 10.1145/3041021.3053903 – ident: e_1_2_8_32_1 doi: 10.1016/j.aap.2014.05.005 – ident: e_1_2_8_8_1 doi: 10.1038/nature08631 – ident: e_1_2_8_20_1 doi: 10.1002/0471715816 – ident: e_1_2_8_21_1 doi: 10.1016/j.physa.2022.127588 – ident: e_1_2_8_11_1 doi: 10.1137/070710111 – ident: e_1_2_8_4_1 doi: 10.1098/rspa.2019.0742 – ident: e_1_2_8_28_1 doi: 10.1080/00401706.2024.2421744 – ident: e_1_2_8_7_1 doi: 10.1214/14-AAP1053 – ident: e_1_2_8_23_1 doi: 10.1080/01621459.1995.10476572 – volume: 27 start-page: 292 issue: 5 year: 1976 ident: e_1_2_8_31_1 article-title: A general theory of bibliometric and other cumulative advantage processes publication-title: Journal of the Association for Information Science and Technology – ident: e_1_2_8_19_1 doi: 10.1214/009053604000001147 – start-page: 251 volume-title: Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication', SIGCOMM'99 year: 1999 ident: e_1_2_8_13_1 – ident: e_1_2_8_10_1 doi: 10.1111/j.2517-6161.1995.tb02042.x – ident: e_1_2_8_41_1 doi: 10.1007/978-3-319-20591-5_29 – volume: 8 issue: 2811 year: 2018 ident: e_1_2_8_35_1 article-title: A preferential attachment paradox: How preferential attachment combines with growth to produce networks with log‐normal in‐degree distributions publication-title: Scientific Reports |
| SSID | ssj0017946 |
| Score | 2.3582938 |
| Snippet | The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 702 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian model selection degree distribution generalized Pareto Markov analysis Markov chain Monte Carlo Monte Carlo simulation polyalgorithm Power law Statistical inference threshold uncertainty Uncertainty |
| Title | Degree distributions in networks: Beyond the power law |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fstan.12355 https://www.proquest.com/docview/3129234281 |
| Volume | 78 |
| WOSCitedRecordID | wos001273989400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-9574 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017946 issn: 0039-0402 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q66EXtT6wWsuCnoRIsrvZZMVLUYsHKUVb6C3sqyBILI2Pv-9uNmnrRRBve0iW8DGz881m5huAC2kpMU-c-KAhKqBkrgLJiAhM4vLXOWVUqnLYRDIapbMZHzfgpu6F8foQqws35xnlee0cXMhiw8kdebpynZ7xFrSiiCTOpjEdr_4hOOl0L8rorv9dHU-nruNZv_szHK055iZTLUPNcPd_H7kHOxXFRANvEx1omHwf2o5VelHmA2B3xqbZBmmnmlsNvCrQS45yXxReXCPf2YIsPUQLN0gNvYqvQ5gO7ye3D0E1QCFQBPM4UDGnRJPEMMlNxLnESkRRookKmVMoD7WMIsFJOk9ju9KaUsNigxmWQhLFyRE087fcHAMKtYpTTIkSoSVQwkimlFGUSS01ljLtwnmNY7bwOhlZnV84ELIShC70aoizyleKjFjKgYlNg6IuXJZg_rJD9jwZjMrVyV8ePoU2tmzENxH2oPm-_DBnsK0-LfLLfmk3fWjdPQ2nj99lP8bU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60Cvai1gfW54KehEiyu9lkvRW1VKyhYIXeQvZRECSW1sffdyePtl4E8baHZAmTncw3k2--AbhQDhLLCMUHLdMeZ2PtKcEyz0aYv4654EoXwyaiJIlHIzmouDnYC1PqQ8wLbugZxfcaHRwL0ktejujpCls9w1VY4y4sIaOP8sH8JwJqp5eqjFj_RyJPqybyLO79GY8WIHMZqhaxprv1z6fchs0KZJJOeSpasGLzHWgirixlmXdB3FqXaFtiUDe3Gnk1Iy85yUta-OyalL0txAFEMsFRauQ1-9qD5-7d8KbnVSMUPM2oDD0dSs4Mi6xQ0gZSKqqzIIgM075AjXLfqCDIJIvHcehWxnBuRWipoCpTTEu2D438LbcHQHyjw5hypjPfQajMKqG11VwoowxVKm7DeW3IdFIqZaR1hoFGSAsjtOG4tnFaecssZQ50UOYSoaANl4U1f9khfRp2kmJ1-JeLz2CjN3zsp_375OEImtRhk7Kl8Bga79MPewLr-tO9helpcYi-AfpzyRg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNmLOi84nRrQJ6HSJmna-DbUoShl4IS9leZSEKSOzcvfN5d2my-C-JaHNpSv-ZrvpOd8B-BcGEnME2s-qIkMKCllIBgpAp3Y-LWkjArpmk0kWZaOx3xY5-bYWhjvDzE_cLPMcN9rS3A9UeUSy616urSlnvEqrNE4cbzEdDj_iWC9070roz3_t4k8nSaRZ3Hvz_1oITKXparbawZb_3zKbdisRSbq-1XRgRVd7UDb6kpvy7wL7EabQFsjZX1z65ZXM_RSocqnhc-ukK9tQUYgooltpYZei689eB7cjq7vgrqFQiAJ5nEgY06JIolmguuIc4FlEUWJIjJk1qM8VCKKCk7SMo3NSClKNYs1ZlgUgkhO9qFVvVX6AFCoZJxiSmQRGglVaMGk1JIyoYTCQqRdOGuAzCfeKSNvIgwLQu5A6EKvwTiv2TLLiREdmJhAKOrChUPzlxnyp1E_c6PDv1x8ChvDm0H-eJ89HEEbG2niKwp70HqffuhjWJef5iVMT9wa-gbWL8iT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degree+distributions+in+networks%3A+Beyond+the+power+law&rft.jtitle=Statistica+Neerlandica&rft.au=Lee%2C+Clement&rft.au=Eastoe%2C+Emma+F&rft.au=Farrell%2C+Aiden&rft.date=2024-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0039-0402&rft.eissn=1467-9574&rft.volume=78&rft.issue=4&rft.spage=702&rft.epage=718&rft_id=info:doi/10.1111%2Fstan.12355&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-0402&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-0402&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-0402&client=summon |