Degree distributions in networks: Beyond the power law

The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold nee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Neerlandica Jg. 78; H. 4; S. 702 - 718
Hauptverfasser: Lee, Clement, Eastoe, Emma F., Farrell, Aiden
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.11.2024
Schlagworte:
ISSN:0039-0402, 1467-9574
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold needs to be preselected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data could have come from the power law. We propose a modeling framework that combines two different generalizations of the power law, namely the generalized Pareto distribution and the Zipf‐polylog distribution, to resolve these issues. The proposed mixture distributions are shown to fit the data well and quantify the threshold uncertainty in a natural way. A model selection step embedded in the Bayesian inference algorithm further answers the question whether the power law is adequate.
AbstractList The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold needs to be preselected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data could have come from the power law. We propose a modeling framework that combines two different generalizations of the power law, namely the generalized Pareto distribution and the Zipf‐polylog distribution, to resolve these issues. The proposed mixture distributions are shown to fit the data well and quantify the threshold uncertainty in a natural way. A model selection step embedded in the Bayesian inference algorithm further answers the question whether the power law is adequate.
Author Farrell, Aiden
Lee, Clement
Eastoe, Emma F.
Author_xml – sequence: 1
  givenname: Clement
  orcidid: 0000-0003-1785-8671
  surname: Lee
  fullname: Lee, Clement
  email: clement.lee@newcastle.ac.uk
  organization: Newcastle University
– sequence: 2
  givenname: Emma F.
  surname: Eastoe
  fullname: Eastoe, Emma F.
  organization: Lancaster University
– sequence: 3
  givenname: Aiden
  surname: Farrell
  fullname: Farrell, Aiden
  organization: Lancaster University
BookMark eNp9kMtOwzAQRS1UJNrChi-wxA4pxeNHUrMr5SlVsKCsLSeeQkqxi50q6t-TEtbMZmZx5l7pjMjAB4-EnAObQDdXqbF-AlwodUSGIPMi06qQAzJkTOiMScZPyCilNWNQaJkPSX6L7xGRujo1sS53TR18orWnHps2xM90TW9wH7yjzQfSbWgx0o1tT8nxym4Snv3tMXm7v1vOH7PFy8PTfLbIKsG1yiqlpXCiwLzUCFqXvLIAhRMVyzlIxVwJYLWYrqaqu5yTEnOFPOelLUWlxZhc9LnbGL53mBqzDrvou0ojgGsuJJ9CR132VBVDShFXZhvrLxv3Bpg5eDEHL-bXSwdDD7f1Bvf_kOZ1OXvuf34AxKNl0Q
Cites_doi 10.1214/17-AOAS1081
10.1007/s10687-011-0137-7
10.1126/science.1216142
10.1038/43601
10.1103/PhysRevResearch.1.033034
10.1126/science.286.5439.509
10.18637/jss.v064.i02
10.1080/00107510500052444
10.1371/journal.pone.0228713
10.1177/0022002714530430
10.1007/978-1-4471-3675-0
10.1007/978-3-319-13191-7_4
10.1093/bioinformatics/bts372
10.3390/e23050502
10.1214/17-AOAS1082
10.1016/j.joi.2014.09.011
10.1016/j.physa.2022.127680
10.18637/jss.v084.i05
10.1073/pnas.0501179102
10.1098/rstb.1925.0002
10.1214/aos/1176343003
10.1145/3041021.3053903
10.1016/j.aap.2014.05.005
10.1038/nature08631
10.1002/0471715816
10.1016/j.physa.2022.127588
10.1137/070710111
10.1098/rspa.2019.0742
10.1080/00401706.2024.2421744
10.1214/14-AAP1053
10.1080/01621459.1995.10476572
10.1214/009053604000001147
10.1111/j.2517-6161.1995.tb02042.x
10.1007/978-3-319-20591-5_29
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Netherlands Society for Statistics and Operations Research.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Netherlands Society for Statistics and Operations Research.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/stan.12355
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9574
EndPage 718
ExternalDocumentID 10_1111_stan_12355
STAN12355
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29Q
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
U5U
UB1
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3295-c5943d37e6b9e199b2ca117d3c0621450db11a938f85b11dd44e65e262bab3c93
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001273989400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0039-0402
IngestDate Wed Aug 13 08:39:29 EDT 2025
Sat Nov 29 06:38:02 EST 2025
Wed Jan 22 17:12:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3295-c5943d37e6b9e199b2ca117d3c0621450db11a938f85b11dd44e65e262bab3c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1785-8671
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fstan.12355
PQID 3129234281
PQPubID 30850
PageCount 17
ParticipantIDs proquest_journals_3129234281
crossref_primary_10_1111_stan_12355
wiley_primary_10_1111_stan_12355_STAN12355
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Statistica Neerlandica
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 59
2021; 23
1995; 90
2019; 10
2019; 1
1995; 57
1999; 286
2020; 15
2005
2018; 84
2012; 15
1925; 213
1999; 401
1976; 27
2012; 10
2005; 46
1999
2015; 25
2018; 8
2009; 51
2001
2023
2005; 102
2015; 64
2017; 11
2009; 462
2017
2012; 28
2015
2014
2020; 476
2013
2018; 12
2022; 603
2022; 604
2012; 335
2014; 8
2014; 71
2005; 33
1975; 3
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
Kunegis J. (e_1_2_8_24_1) 2013
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
Scarrott C. (e_1_2_8_34_1) 2012; 10
e_1_2_8_23_1
Sheridan P. (e_1_2_8_35_1) 2018; 8
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Broido A. D. (e_1_2_8_9_1) 2019; 10
Price D. (e_1_2_8_31_1) 1976; 27
Faloutsos M. (e_1_2_8_13_1) 1999
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 462
  start-page: 911
  issue: 7275
  year: 2009
  end-page: 914
  article-title: Common ecology quantifies human insurgency
  publication-title: Nature
– volume: 15
  start-page: 299
  year: 2012
  end-page: 317
  article-title: Discretization of distributions in the maximum domain of attraction
  publication-title: Extremes
– volume: 286
  start-page: 509
  issue: 5439
  year: 1999
  end-page: 512
  article-title: Emergence of scaling in random networks
  publication-title: Science
– year: 2005
– volume: 23
  issue: 5
  year: 2021
  article-title: A mixture model of truncated zeta distributions with applications to scientific collaboration networks
  publication-title: Entropy
– volume: 71
  start-page: 38
  year: 2014
  end-page: 49
  article-title: Modelling road accident blackspots data with the discrete generalized Pareto distribution
  publication-title: Accident Analysis and Prevention
– volume: 603
  year: 2022
  article-title: The Zipf‐Polylog distribution: Modeling human interactions through social networks
  publication-title: Physica A
– year: 2001
– volume: 476
  issue: 2241
  year: 2020
  article-title: How rare are power‐law networks really?
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 25
  start-page: 2462
  issue: 5
  year: 2015
  end-page: 2502
  article-title: Twitter event networks and the superstar model
  publication-title: The Annals of Applied Probability
– volume: 46
  start-page: 323
  issue: 5
  year: 2005
  end-page: 351
  article-title: Power laws, Pareto distributions and Zipf's law
  publication-title: Contemporary Physics
– volume: 57
  start-page: 473
  issue: 3
  year: 1995
  end-page: 484
  article-title: Bayesian model choice via Markov chain Monte Carlo methods
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 33
  start-page: 730
  issue: 2
  year: 2005
  end-page: 773
  article-title: Spike and slab variable selection: Frequentist and Bayesian strategies
  publication-title: The Annals of Statistics
– volume: 15
  issue: 2
  year: 2020
  article-title: Science through Wikipedia: A novel representation of open knowledge through co‐citation networks
  publication-title: PLoS One
– volume: 90
  start-page: 773
  issue: 430
  year: 1995
  end-page: 795
  article-title: Bayes factors
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 2357
  issue: 4
  year: 2017
  end-page: 2374
  article-title: Estimating the number of casualties in the American Indian war: A Bayesian analysis using the power law distribution
  publication-title: Annals of Applied Statistics
– volume: 10
  issue: 1017
  year: 2019
  article-title: Scale‐free networks are rare
  publication-title: Nature Communications
– year: 2014
– volume: 3
  start-page: 119
  issue: 1
  year: 1975
  end-page: 131
  article-title: Statistical inference using extreme order statistics
  publication-title: The Annals of Statistics
– volume: 8
  issue: 2811
  year: 2018
  article-title: A preferential attachment paradox: How preferential attachment combines with growth to produce networks with log‐normal in‐degree distributions
  publication-title: Scientific Reports
– volume: 213
  start-page: 21
  issue: 402‐410
  year: 1925
  end-page: 87
  article-title: II.‐A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F. R. S
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character
– volume: 51
  start-page: 661
  issue: 4
  year: 2009
  end-page: 703
  article-title: Power‐law distributions in empirical data
  publication-title: SIAM Review
– volume: 604
  year: 2022
  article-title: Random processes with high variance produce scale free networks
  publication-title: Physica A
– volume: 28
  start-page: i562
  issue: 18
  year: 2012
  end-page: i568
  article-title: An approach to describing and analysing bulk biological annotation quality: A case study using UniProtKB
  publication-title: Bioinformatics
– volume: 64
  start-page: 1
  issue: 2
  year: 2015
  end-page: 16
  article-title: Fitting heavy tailed distributions: The poweRlaw package
  publication-title: Journal of Statistical Software
– volume: 27
  start-page: 292
  issue: 5
  year: 1976
  end-page: 306
  article-title: A general theory of bibliometric and other cumulative advantage processes
  publication-title: Journal of the Association for Information Science and Technology
– volume: 1
  year: 2019
  article-title: Scale‐free networks well done
  publication-title: Physical Review Research
– year: 2023
– volume: 401
  start-page: 130
  year: 1999
  end-page: 131
  article-title: Internet: Diameter of the world‐wide web
  publication-title: Nature
– start-page: 251
  year: 1999
  end-page: 262
– volume: 8
  start-page: 963
  year: 2014
  end-page: 971
  article-title: Regression for citation data: An evaluation of different methods
  publication-title: Journal of Infometrics
– year: 2017
– start-page: 1493
  year: 2017
  end-page: 1498
– start-page: 1343
  year: 2013
  end-page: 1350
– volume: 12
  start-page: 246
  issue: 1
  year: 2018
  end-page: 282
  article-title: Extreme value modelling of water‐related insurance claims
  publication-title: The Annals of Applied Statistics
– volume: 10
  start-page: 33
  issue: 1
  year: 2012
  end-page: 60
  article-title: A review of extreme value threshold estimation and uncertainty quantification
  publication-title: REVSTAT – Statistical Journal
– volume: 59
  start-page: 1216
  year: 2015
  end-page: 1241
  article-title: Using power laws to estimate conflict size
  publication-title: Journal of Conflict Resolution
– volume: 84
  start-page: 1
  issue: 5
  year: 2018
  end-page: 27
  article-title: Evmix: An R package for extreme value mixture modeling, threshold estimation and boundary corrected kernel density estimation
  publication-title: Journal of Statistical Software
– volume: 335
  start-page: 665
  issue: 6069
  year: 2012
  end-page: 666
  article-title: Critical truths about power laws
  publication-title: Science
– volume: 102
  start-page: 4221
  issue: 12
  year: 2005
  end-page: 4224
  article-title: Subnets of scale‐free networks are not scale‐free: Sampling properties of networks
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 323
  year: 2015
  end-page: 333
– ident: e_1_2_8_33_1
  doi: 10.1214/17-AOAS1081
– ident: e_1_2_8_36_1
  doi: 10.1007/s10687-011-0137-7
– ident: e_1_2_8_37_1
  doi: 10.1126/science.1216142
– ident: e_1_2_8_2_1
  doi: 10.1038/43601
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevResearch.1.033034
– ident: e_1_2_8_5_1
  doi: 10.1126/science.286.5439.509
– ident: e_1_2_8_15_1
  doi: 10.18637/jss.v064.i02
– ident: e_1_2_8_29_1
  doi: 10.1080/00107510500052444
– ident: e_1_2_8_3_1
  doi: 10.1371/journal.pone.0228713
– ident: e_1_2_8_14_1
  doi: 10.1177/0022002714530430
– ident: e_1_2_8_17_1
– start-page: 1343
  volume-title: Proceedings of the international conference on world wide web companion
  year: 2013
  ident: e_1_2_8_24_1
– ident: e_1_2_8_12_1
  doi: 10.1007/978-1-4471-3675-0
– ident: e_1_2_8_26_1
  doi: 10.1007/978-3-319-13191-7_4
– ident: e_1_2_8_25_1
– ident: e_1_2_8_6_1
  doi: 10.1093/bioinformatics/bts372
– ident: e_1_2_8_22_1
  doi: 10.3390/e23050502
– ident: e_1_2_8_16_1
  doi: 10.1214/17-AOAS1082
– ident: e_1_2_8_39_1
  doi: 10.1016/j.joi.2014.09.011
– volume: 10
  start-page: 33
  issue: 1
  year: 2012
  ident: e_1_2_8_34_1
  article-title: A review of extreme value threshold estimation and uncertainty quantification
  publication-title: REVSTAT – Statistical Journal
– ident: e_1_2_8_40_1
  doi: 10.1016/j.physa.2022.127680
– ident: e_1_2_8_18_1
  doi: 10.18637/jss.v084.i05
– ident: e_1_2_8_38_1
  doi: 10.1073/pnas.0501179102
– ident: e_1_2_8_43_1
  doi: 10.1098/rstb.1925.0002
– ident: e_1_2_8_30_1
  doi: 10.1214/aos/1176343003
– volume: 10
  issue: 1017
  year: 2019
  ident: e_1_2_8_9_1
  article-title: Scale‐free networks are rare
  publication-title: Nature Communications
– ident: e_1_2_8_27_1
  doi: 10.1145/3041021.3053903
– ident: e_1_2_8_32_1
  doi: 10.1016/j.aap.2014.05.005
– ident: e_1_2_8_8_1
  doi: 10.1038/nature08631
– ident: e_1_2_8_20_1
  doi: 10.1002/0471715816
– ident: e_1_2_8_21_1
  doi: 10.1016/j.physa.2022.127588
– ident: e_1_2_8_11_1
  doi: 10.1137/070710111
– ident: e_1_2_8_4_1
  doi: 10.1098/rspa.2019.0742
– ident: e_1_2_8_28_1
  doi: 10.1080/00401706.2024.2421744
– ident: e_1_2_8_7_1
  doi: 10.1214/14-AAP1053
– ident: e_1_2_8_23_1
  doi: 10.1080/01621459.1995.10476572
– volume: 27
  start-page: 292
  issue: 5
  year: 1976
  ident: e_1_2_8_31_1
  article-title: A general theory of bibliometric and other cumulative advantage processes
  publication-title: Journal of the Association for Information Science and Technology
– ident: e_1_2_8_19_1
  doi: 10.1214/009053604000001147
– start-page: 251
  volume-title: Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication', SIGCOMM'99
  year: 1999
  ident: e_1_2_8_13_1
– ident: e_1_2_8_10_1
  doi: 10.1111/j.2517-6161.1995.tb02042.x
– ident: e_1_2_8_41_1
  doi: 10.1007/978-3-319-20591-5_29
– volume: 8
  issue: 2811
  year: 2018
  ident: e_1_2_8_35_1
  article-title: A preferential attachment paradox: How preferential attachment combines with growth to produce networks with log‐normal in‐degree distributions
  publication-title: Scientific Reports
SSID ssj0017946
Score 2.3582938
Snippet The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 702
SubjectTerms Algorithms
Bayesian analysis
Bayesian model selection
degree distribution
generalized Pareto
Markov analysis
Markov chain Monte Carlo
Monte Carlo simulation
polyalgorithm
Power law
Statistical inference
threshold uncertainty
Uncertainty
Title Degree distributions in networks: Beyond the power law
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fstan.12355
https://www.proquest.com/docview/3129234281
Volume 78
WOSCitedRecordID wos001273989400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9574
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017946
  issn: 0039-0402
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q66EXtT6wWsuCnoRIsrvZZMVLUYsHKUVb6C3sqyBILI2Pv-9uNmnrRRBve0iW8DGz881m5huAC2kpMU-c-KAhKqBkrgLJiAhM4vLXOWVUqnLYRDIapbMZHzfgpu6F8foQqws35xnlee0cXMhiw8kdebpynZ7xFrSiiCTOpjEdr_4hOOl0L8rorv9dHU-nruNZv_szHK055iZTLUPNcPd_H7kHOxXFRANvEx1omHwf2o5VelHmA2B3xqbZBmmnmlsNvCrQS45yXxReXCPf2YIsPUQLN0gNvYqvQ5gO7ye3D0E1QCFQBPM4UDGnRJPEMMlNxLnESkRRookKmVMoD7WMIsFJOk9ju9KaUsNigxmWQhLFyRE087fcHAMKtYpTTIkSoSVQwkimlFGUSS01ljLtwnmNY7bwOhlZnV84ELIShC70aoizyleKjFjKgYlNg6IuXJZg_rJD9jwZjMrVyV8ePoU2tmzENxH2oPm-_DBnsK0-LfLLfmk3fWjdPQ2nj99lP8bU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60Cvai1gfW54KehEiyu9lkvRW1VKyhYIXeQvZRECSW1sffdyePtl4E8baHZAmTncw3k2--AbhQDhLLCMUHLdMeZ2PtKcEyz0aYv4654EoXwyaiJIlHIzmouDnYC1PqQ8wLbugZxfcaHRwL0ktejujpCls9w1VY4y4sIaOP8sH8JwJqp5eqjFj_RyJPqybyLO79GY8WIHMZqhaxprv1z6fchs0KZJJOeSpasGLzHWgirixlmXdB3FqXaFtiUDe3Gnk1Iy85yUta-OyalL0txAFEMsFRauQ1-9qD5-7d8KbnVSMUPM2oDD0dSs4Mi6xQ0gZSKqqzIIgM075AjXLfqCDIJIvHcehWxnBuRWipoCpTTEu2D438LbcHQHyjw5hypjPfQajMKqG11VwoowxVKm7DeW3IdFIqZaR1hoFGSAsjtOG4tnFaecssZQ50UOYSoaANl4U1f9khfRp2kmJ1-JeLz2CjN3zsp_375OEImtRhk7Kl8Bga79MPewLr-tO9helpcYi-AfpzyRg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNmLOi84nRrQJ6HSJmna-DbUoShl4IS9leZSEKSOzcvfN5d2my-C-JaHNpSv-ZrvpOd8B-BcGEnME2s-qIkMKCllIBgpAp3Y-LWkjArpmk0kWZaOx3xY5-bYWhjvDzE_cLPMcN9rS3A9UeUSy616urSlnvEqrNE4cbzEdDj_iWC9070roz3_t4k8nSaRZ3Hvz_1oITKXparbawZb_3zKbdisRSbq-1XRgRVd7UDb6kpvy7wL7EabQFsjZX1z65ZXM_RSocqnhc-ukK9tQUYgooltpYZei689eB7cjq7vgrqFQiAJ5nEgY06JIolmguuIc4FlEUWJIjJk1qM8VCKKCk7SMo3NSClKNYs1ZlgUgkhO9qFVvVX6AFCoZJxiSmQRGglVaMGk1JIyoYTCQqRdOGuAzCfeKSNvIgwLQu5A6EKvwTiv2TLLiREdmJhAKOrChUPzlxnyp1E_c6PDv1x8ChvDm0H-eJ89HEEbG2niKwp70HqffuhjWJef5iVMT9wa-gbWL8iT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degree+distributions+in+networks%3A+Beyond+the+power+law&rft.jtitle=Statistica+Neerlandica&rft.au=Lee%2C+Clement&rft.au=Eastoe%2C+Emma+F&rft.au=Farrell%2C+Aiden&rft.date=2024-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0039-0402&rft.eissn=1467-9574&rft.volume=78&rft.issue=4&rft.spage=702&rft.epage=718&rft_id=info:doi/10.1111%2Fstan.12355&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-0402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-0402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-0402&client=summon