Degree distributions in networks: Beyond the power law

The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold nee...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistica Neerlandica Ročník 78; číslo 4; s. 702 - 718
Hlavní autoři: Lee, Clement, Eastoe, Emma F., Farrell, Aiden
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.11.2024
Témata:
ISSN:0039-0402, 1467-9574
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold needs to be preselected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data could have come from the power law. We propose a modeling framework that combines two different generalizations of the power law, namely the generalized Pareto distribution and the Zipf‐polylog distribution, to resolve these issues. The proposed mixture distributions are shown to fit the data well and quantify the threshold uncertainty in a natural way. A model selection step embedded in the Bayesian inference algorithm further answers the question whether the power law is adequate.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0039-0402
1467-9574
DOI:10.1111/stan.12355