Efficient Active Learning by Querying Discriminative and Representative Samples and Fully Exploiting Unlabeled Data

Active learning is an important learning paradigm in machine learning and data mining, which aims to train effective classifiers with as few labeled samples as possible. Querying discriminative (informative) and representative samples are the state-of-the-art approach for active learning. Fully util...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 32; číslo 9; s. 4111 - 4122
Hlavní autori: Gu, Bin, Zhai, Zhou, Deng, Cheng, Huang, Heng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.