Efficient Active Learning by Querying Discriminative and Representative Samples and Fully Exploiting Unlabeled Data
Active learning is an important learning paradigm in machine learning and data mining, which aims to train effective classifiers with as few labeled samples as possible. Querying discriminative (informative) and representative samples are the state-of-the-art approach for active learning. Fully util...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 32; číslo 9; s. 4111 - 4122 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!