Multivehicle Task Assignment Based on Collaborative Neurodynamic Optimization With Discrete Hopfield Networks

This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic optimization problem for TA is reformulated as a quadratic unconstrained binary optimization (QUBO) problem with a quadratic utility function an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 32; no. 12; pp. 5274 - 5286
Main Authors: Wang, Jiasen, Wang, Jun, Han, Qing-Long
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic optimization problem for TA is reformulated as a quadratic unconstrained binary optimization (QUBO) problem with a quadratic utility function and a penalty function for handling load capacity and cooperation constraints. In the framework of CNO with a population of discrete Hopfield networks (DHNs), a TA algorithm is proposed for solving the formulated QUBO problem. Superior experimental results in four typical multivehicle operation scenarios are reported to substantiate the efficacy of the proposed neurodynamics-based TA approach.
AbstractList This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic optimization problem for TA is reformulated as a quadratic unconstrained binary optimization (QUBO) problem with a quadratic utility function and a penalty function for handling load capacity and cooperation constraints. In the framework of CNO with a population of discrete Hopfield networks (DHNs), a TA algorithm is proposed for solving the formulated QUBO problem. Superior experimental results in four typical multivehicle operation scenarios are reported to substantiate the efficacy of the proposed neurodynamics-based TA approach.
This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic optimization problem for TA is reformulated as a quadratic unconstrained binary optimization (QUBO) problem with a quadratic utility function and a penalty function for handling load capacity and cooperation constraints. In the framework of CNO with a population of discrete Hopfield networks (DHNs), a TA algorithm is proposed for solving the formulated QUBO problem. Superior experimental results in four typical multivehicle operation scenarios are reported to substantiate the efficacy of the proposed neurodynamics-based TA approach.This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic optimization problem for TA is reformulated as a quadratic unconstrained binary optimization (QUBO) problem with a quadratic utility function and a penalty function for handling load capacity and cooperation constraints. In the framework of CNO with a population of discrete Hopfield networks (DHNs), a TA algorithm is proposed for solving the formulated QUBO problem. Superior experimental results in four typical multivehicle operation scenarios are reported to substantiate the efficacy of the proposed neurodynamics-based TA approach.
Author Wang, Jiasen
Wang, Jun
Han, Qing-Long
Author_xml – sequence: 1
  givenname: Jiasen
  orcidid: 0000-0001-5687-5947
  surname: Wang
  fullname: Wang, Jiasen
  email: jiasenwangcs@yeah.net
  organization: Future Network Research Center, Purple Mountain Laboratories, Nanjing, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science and the School of Data Science, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Qing-Long
  orcidid: 0000-0002-7207-0716
  surname: Han
  fullname: Han, Qing-Long
  email: qhan@swin.edu.au
  organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia
BookMark eNp9kU9vFCEYh4lpY2vtF9DLJF687BZeYAaOdf1Tk-324Bq9EYZ9x9LODCswmvrpZbtNDz2UCyQ8D3l__F6RgzGMSMgbRueMUX22Xq2W3-ZAgc05VSBBvSDHwGqYAVfq4PHc_Dwipynd0LJqKmuhX5IjLmjT8IYdk-Fy6rP_g9fe9VitbbqtzlPyv8YBx1x9sAk3VRirReh724Zod2y1wimGzd1oB--qq232g_9Xbgr3w-fr6qNPLmLG6iJsO4_9pgj5b4i36TU57Gyf8PRhPyHfP39aLy5my6svXxfny5njoPIMmw3qzinbStVKDbxrNCiBSnada6Vl2raaC46OSc4BoKmZ0kyIEr0RiPyEvN-_u43h94Qpm6HMhCXDiGFKBiSvFS1_xwr67gl6E6Y4lukM1FRopmpdF0rtKRdDShE743y-j5yj9b1h1OxaMfetmF0r5qGVosITdRv9YOPd89LbveQR8VHQQkgAwf8DFMSZJw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3350335
crossref_primary_10_1016_j_apm_2024_06_008
crossref_primary_10_1109_TSMC_2022_3221937
crossref_primary_10_3390_fractalfract7010012
crossref_primary_10_1109_TITS_2023_3287163
crossref_primary_10_1007_s00339_025_08623_7
crossref_primary_10_1016_j_knosys_2022_109026
crossref_primary_10_1109_TNSE_2025_3550174
crossref_primary_10_1016_j_comcom_2023_09_033
crossref_primary_10_1109_TNNLS_2022_3212593
crossref_primary_10_1109_TNNLS_2022_3213167
crossref_primary_10_1109_TSMC_2025_3539232
crossref_primary_10_1016_j_chaos_2024_114944
crossref_primary_10_1016_j_neunet_2024_107027
crossref_primary_10_1109_TETCI_2024_3405370
crossref_primary_10_1109_TIE_2024_3429616
crossref_primary_10_1109_TSG_2023_3305326
crossref_primary_10_1109_TSMC_2023_3347044
crossref_primary_10_1109_JSEN_2025_3538173
crossref_primary_10_1109_JAS_2022_105524
crossref_primary_10_1016_j_compag_2024_109628
crossref_primary_10_1016_j_dajour_2023_100354
crossref_primary_10_1109_TCAD_2023_3287760
crossref_primary_10_1109_TNNLS_2023_3238473
crossref_primary_10_1109_TII_2022_3180080
crossref_primary_10_1016_j_oceaneng_2024_117632
crossref_primary_10_1109_TSMC_2024_3417900
crossref_primary_10_1016_j_neunet_2021_10_007
crossref_primary_10_1016_j_knosys_2022_109593
crossref_primary_10_1109_TNNLS_2022_3222206
crossref_primary_10_1016_j_neunet_2022_06_006
crossref_primary_10_1109_TSMC_2023_3331260
crossref_primary_10_1016_j_neunet_2024_106525
crossref_primary_10_1016_j_neunet_2024_106348
crossref_primary_10_1016_j_oceaneng_2025_120330
crossref_primary_10_1109_TIV_2023_3240855
crossref_primary_10_1109_TAES_2023_3235864
crossref_primary_10_1109_TCYB_2023_3289712
crossref_primary_10_1016_j_ins_2025_122138
crossref_primary_10_1109_TNNLS_2022_3160645
crossref_primary_10_1016_j_neunet_2022_07_018
Cites_doi 10.1007/s00291-003-0153-3
10.1109/TNNLS.2020.3027471
10.1109/TNN.2008.2000273
10.1109/TNNLS.2017.2652478
10.1109/TNN.2004.824252
10.1109/TNNLS.2016.2582381
10.1109/TNNLS.2015.2441697
10.1109/TSMC.2015.2491878
10.1109/TNNLS.2013.2292893
10.1109/TNN.2007.910736
10.1109/TII.2020.3004343
10.1109/TNNLS.2016.2549566
10.1016/j.cor.2020.105004
10.1109/JIOT.2020.3025797
10.1177/0278364916632065
10.1109/TNNLS.2019.2918984
10.1109/TNNLS.2013.2244908
10.1109/TNNLS.2018.2884788
10.1109/TNN.2004.841779
10.1109/TNN.2006.879774
10.1109/TNN.2008.2003287
10.1109/TNNLS.2016.2524619
10.1109/TNNLS.2019.2927639
10.1016/j.ifacol.2016.09.054
10.1109/JPROC.2006.876939
10.1016/j.ejor.2005.09.032
10.1109/TCSI.2004.834493
10.1137/S1052623497325107
10.1109/TCYB.2015.2479118
10.1109/TNNLS.2020.2973760
10.1109/TNNLS.2015.2500618
10.1109/TCYB.2020.3042519
10.1016/j.eswa.2010.02.032
10.1016/0166-218X(86)90073-9
10.1109/21.35355
10.1109/TNNLS.2015.2425301
10.1073/pnas.81.10.3088
10.1109/TRO.2009.2022423
10.1109/TCYB.2016.2535153
10.1109/TCYB.2015.2418052
10.1016/0893-6080(95)00114-X
10.1109/TNN.2006.881046
10.1109/72.728383
10.1109/TNN.2011.2169682
10.1109/TCS.1986.1085953
10.1109/TNNLS.2016.2538288
10.1109/TSMC.2016.2627579
10.1007/978-3-642-21498-1_14
10.1073/pnas.79.8.2554
10.1016/0166-218X(85)90029-0
10.1109/TRO.2017.2693377
10.1287/ijoc.1060.0175
10.1109/TNNLS.2016.2595489
10.1016/j.neunet.2019.02.002
10.1109/TSMCB.2012.2210212
10.1007/s10878-014-9734-0
10.1016/j.neunet.2014.03.006
10.1126/science.3755256
10.1109/TNN.2011.2104979
10.1109/TNNLS.2018.2806481
10.1109/72.774276
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3082528
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5286
ExternalDocumentID 10_1109_TNNLS_2021_3082528
9445224
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP200100700
  funderid: 10.13039/501100000923
– fundername: Research Grants Council of the Hong Kong Special Administrative Region of China
  grantid: 11208517; 11202318
  funderid: 10.13039/501100002920
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-e7de9fc8ab58b5923f79284e85ffcb5a19ab9343ec15332227618914423874ee3
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724480600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 23:36:50 EDT 2025
Sun Nov 09 06:49:01 EST 2025
Sat Nov 29 01:40:12 EST 2025
Tue Nov 18 21:44:58 EST 2025
Wed Aug 27 05:08:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-e7de9fc8ab58b5923f79284e85ffcb5a19ab9343ec15332227618914423874ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1305-5735
0000-0002-7207-0716
0000-0001-5687-5947
PMID 34077371
PQID 2604918696
PQPubID 85436
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2021_3082528
ieee_primary_9445224
crossref_primary_10_1109_TNNLS_2021_3082528
proquest_miscellaneous_2536800211
proquest_journals_2604918696
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
zhu (ref13) 2013; 43
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
guo (ref34) 2011; 22
ref49
ref8
ref7
ref9
ref4
ref3
ref6
parsopoulos (ref60) 2002; 76
ref5
ref40
ref35
ref37
ref36
ref30
ref33
ref32
ref2
choi (ref1) 2010
ref39
hopfield (ref17) 1985; 52
ref38
liu (ref31) 2011; 22
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref21
xia (ref24) 2008; 19
ref28
ref27
ref29
ref62
ref61
References_xml – ident: ref57
  doi: 10.1007/s00291-003-0153-3
– ident: ref47
  doi: 10.1109/TNNLS.2020.3027471
– volume: 19
  start-page: 1340
  year: 2008
  ident: ref24
  article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2000273
– ident: ref39
  doi: 10.1109/TNNLS.2017.2652478
– ident: ref20
  doi: 10.1109/TNN.2004.824252
– ident: ref48
  doi: 10.1109/TNNLS.2016.2582381
– ident: ref37
  doi: 10.1109/TNNLS.2015.2441697
– ident: ref64
  doi: 10.1109/TSMC.2015.2491878
– ident: ref27
  doi: 10.1109/TNNLS.2013.2292893
– ident: ref26
  doi: 10.1109/TNN.2007.910736
– ident: ref4
  doi: 10.1109/TII.2020.3004343
– ident: ref38
  doi: 10.1109/TNNLS.2016.2549566
– start-page: 3057
  year: 2010
  ident: ref1
  article-title: Decentralized task allocation for heterogeneous teams with cooperation constraints
  publication-title: Proc Amer Control Conf
– ident: ref63
  doi: 10.1016/j.cor.2020.105004
– ident: ref11
  doi: 10.1109/JIOT.2020.3025797
– ident: ref5
  doi: 10.1177/0278364916632065
– ident: ref3
  doi: 10.1109/TNNLS.2019.2918984
– ident: ref32
  doi: 10.1109/TNNLS.2013.2244908
– ident: ref54
  doi: 10.1109/TNNLS.2018.2884788
– ident: ref22
  doi: 10.1109/TNN.2004.841779
– ident: ref33
  doi: 10.1109/TNN.2006.879774
– ident: ref25
  doi: 10.1109/TNN.2008.2003287
– ident: ref44
  doi: 10.1109/TNNLS.2016.2524619
– ident: ref30
  doi: 10.1109/TNNLS.2019.2927639
– ident: ref12
  doi: 10.1016/j.ifacol.2016.09.054
– ident: ref6
  doi: 10.1109/JPROC.2006.876939
– ident: ref56
  doi: 10.1016/j.ejor.2005.09.032
– ident: ref21
  doi: 10.1109/TCSI.2004.834493
– ident: ref61
  doi: 10.1137/S1052623497325107
– ident: ref28
  doi: 10.1109/TCYB.2015.2479118
– ident: ref46
  doi: 10.1109/TNNLS.2020.2973760
– ident: ref29
  doi: 10.1109/TNNLS.2015.2500618
– ident: ref59
  doi: 10.1109/TCYB.2020.3042519
– ident: ref42
  doi: 10.1016/j.eswa.2010.02.032
– ident: ref50
  doi: 10.1016/0166-218X(86)90073-9
– ident: ref51
  doi: 10.1109/21.35355
– ident: ref35
  doi: 10.1109/TNNLS.2015.2425301
– ident: ref15
  doi: 10.1073/pnas.81.10.3088
– ident: ref7
  doi: 10.1109/TRO.2009.2022423
– ident: ref9
  doi: 10.1109/TCYB.2016.2535153
– ident: ref2
  doi: 10.1109/TCYB.2015.2418052
– ident: ref41
  doi: 10.1016/0893-6080(95)00114-X
– ident: ref23
  doi: 10.1109/TNN.2006.881046
– ident: ref19
  doi: 10.1109/72.728383
– volume: 22
  start-page: 1892
  year: 2011
  ident: ref34
  article-title: A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2169682
– ident: ref16
  doi: 10.1109/TCS.1986.1085953
– ident: ref36
  doi: 10.1109/TNNLS.2016.2538288
– ident: ref10
  doi: 10.1109/TSMC.2016.2627579
– ident: ref53
  doi: 10.1007/978-3-642-21498-1_14
– ident: ref14
  doi: 10.1073/pnas.79.8.2554
– ident: ref49
  doi: 10.1016/0166-218X(85)90029-0
– ident: ref8
  doi: 10.1109/TRO.2017.2693377
– ident: ref62
  doi: 10.1287/ijoc.1060.0175
– volume: 52
  start-page: 141
  year: 1985
  ident: ref17
  article-title: Neural computation of decisions in optimization problems
  publication-title: Biol
– volume: 76
  start-page: 214
  year: 2002
  ident: ref60
  article-title: Particle swarm optimization method for constrained optimization problems
  publication-title: Frontiers Artif Intell Appl
– ident: ref40
  doi: 10.1109/TNNLS.2016.2595489
– ident: ref45
  doi: 10.1016/j.neunet.2019.02.002
– volume: 43
  start-page: 504
  year: 2013
  ident: ref13
  article-title: Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2210212
– ident: ref58
  doi: 10.1007/s10878-014-9734-0
– ident: ref43
  doi: 10.1016/j.neunet.2014.03.006
– ident: ref18
  doi: 10.1126/science.3755256
– volume: 22
  start-page: 601
  year: 2011
  ident: ref31
  article-title: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2104979
– ident: ref55
  doi: 10.1109/TNNLS.2018.2806481
– ident: ref52
  doi: 10.1109/72.774276
SSID ssj0000605649
Score 2.5434475
Snippet This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5274
SubjectTerms Algorithms
Biological neural networks
Collaboration
Collaborative neurodynamic optimization (CNO)
Combinatorial analysis
discrete Hopfield network (DHN)
Hopfield neural networks
Neurodynamics
Optimization
Penalty function
Task analysis
task assignment (TA)
Title Multivehicle Task Assignment Based on Collaborative Neurodynamic Optimization With Discrete Hopfield Networks
URI https://ieeexplore.ieee.org/document/9445224
https://www.proquest.com/docview/2604918696
https://www.proquest.com/docview/2536800211
Volume 32
WOSCitedRecordID wos000724480600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2aQ-8MNhAHGxTJvHGujXfySMMpj2gGxI3cW9VL3XZCdZOu4-_HyftdUIgJN4q1Umr2I7txPYP4C0XpDRVHrKQe8yUtYF0DstMyyBMMGS0fAc2YcdjN536L1twOtTCIGJKPsOz-Jju8qs2rOJR2blXsf-32oZta01XqzWcp-Tkl5vk7QpuRCaknW5qZHJ_PhmPP3-laFDws9ifRYuI0ycpmLHS8t9MUsJY-WNjTtbmcu___vMZPO29Sva-E4PnsIXNPuxtEBtYr8AHcJfqbdd4G8nYpFz8YMSf-feUEsA-kEWrWNuwi0fhWCNL_TuqDrmeXdMWc9fXbrJv8-Ut-zinnYdcb3bV3qd8OBqQUssXL-Dm8tPk4irrAReyIIVbZmgr9HVw5Uy7mSbXr7aezBc6Xddhpkvuy5mXSmKIXmKsojXceQrJyO5bhShfwk7TNvgKmLOV5Jom1KZWqlLeVkqW0qMoeS3Qj4Bv1rwIfTfyCIrxs0hRSe6LxLIisqzoWTaCd8OY-64Xxz-pDyJnBsqeKSM43LC26NV1UVBQRzLpjDcjOBlek6LF25OywXZFNFqa6F1z_vrvM7-BJ_H7Xa7LIewsH1Z4BLthvZwvHo5JZqfuOMnsL75J5ro
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQIIXBoyJGwOCxBt0a76bRxhMhzgKEoe4t6qXuuzE1k67j78fJ-0VIRASb5XiRFFtx3Zi-wfwggtSmir1iU8dJspaTzqHZaKlF8YbMlquA5uweZ7NZu7zDrwaamEQMSaf4XH4jG_5VevX4arsxKnQ_1vdgJsBOYt31VrDjUpKnrmJ_q7gRiRC2tm2SiZ1J9M8n3yheFDw49ChRYuA1CcpnLHS8t-MUkRZ-eNojvbmbO__dnoP7vZ-JXvdCcJ92MHmAextMRtYr8L7cBkrbjd4HsjYtFz-YMShxfeYFMDekE2rWNuw01_isUEWO3hUHXY9-0SHzGVfvcm-LVbn7O2Czh5yvtm4vYoZcTQhJpcvH8LXs3fT03HSQy4kXopslaCt0NU-K-c6m2ty_mrryIBhpuvaz3XJXTl3Ukn0wU8MdbSGZ46CMrL8ViHKA9ht2gYfActsJbmmBbWplaqUs5WSpXQoSl4LdCPg239e-L4feYDFuChiXJK6IrKsCCwrepaN4OUw56rrxvFP6v3AmYGyZ8oIjrasLXqFXRYU1pFUZsaZETwfhknVwvtJ2WC7JhotTfCvOT_8-8rP4PZ4-nFSTN7nHx7DnbCXLvPlCHZX12t8Arf8ZrVYXj-NkvsTc4TpGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivehicle+Task+Assignment+Based+on+Collaborative+Neurodynamic+Optimization+With+Discrete+Hopfield+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Jiasen&rft.au=Wang%2C+Jun&rft.au=Han%2C+Qing-Long&rft.date=2021-12-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=12&rft.spage=5274&rft.epage=5286&rft_id=info:doi/10.1109%2FTNNLS.2021.3082528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2021_3082528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon