Multivehicle Task Assignment Based on Collaborative Neurodynamic Optimization With Discrete Hopfield Networks

This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic optimization problem for TA is reformulated as a quadratic unconstrained binary optimization (QUBO) problem with a quadratic utility function an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 32; číslo 12; s. 5274 - 5286
Hlavní autori: Wang, Jiasen, Wang, Jun, Han, Qing-Long
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic optimization problem for TA is reformulated as a quadratic unconstrained binary optimization (QUBO) problem with a quadratic utility function and a penalty function for handling load capacity and cooperation constraints. In the framework of CNO with a population of discrete Hopfield networks (DHNs), a TA algorithm is proposed for solving the formulated QUBO problem. Superior experimental results in four typical multivehicle operation scenarios are reported to substantiate the efficacy of the proposed neurodynamics-based TA approach.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3082528