Representation and approximation of multivariate functions with mixed smoothness by hyperbolic wavelets

In this paper, we study the representation theorems of multivariate functions with mixed smoothness by wavelet basis formed by tensor products of univariate wavelets, we also study the best approximation in the L q( R d) metric for some function classes with mixed smoothness by hyperbolic wavelets a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 291; číslo 2; s. 698 - 715
Hlavní autor: Heping, Wang
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 15.03.2004
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the representation theorems of multivariate functions with mixed smoothness by wavelet basis formed by tensor products of univariate wavelets, we also study the best approximation in the L q( R d) metric for some function classes with mixed smoothness by hyperbolic wavelets and obtain some asymptotic estimates of approximating order.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2003.11.023