Representation and approximation of multivariate functions with mixed smoothness by hyperbolic wavelets
In this paper, we study the representation theorems of multivariate functions with mixed smoothness by wavelet basis formed by tensor products of univariate wavelets, we also study the best approximation in the L q( R d) metric for some function classes with mixed smoothness by hyperbolic wavelets a...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 291; číslo 2; s. 698 - 715 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
15.03.2004
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study the representation theorems of multivariate functions with mixed smoothness by wavelet basis formed by tensor products of univariate wavelets, we also study the best approximation in the
L
q(
R
d)
metric for some function classes with mixed smoothness by hyperbolic wavelets and obtain some asymptotic estimates of approximating order. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2003.11.023 |