An adaptive hybrid fractal model for short-term load forecasting in power systems
•Short-term load forecasting (STLF) of power loads involves fractal features, due to complexity of power systems.•Composite linear fractal interpolation function (CLFIF) modeling better captures irregularities and fluctuations of power loads.•Iterative learning (IL) and chimp optimization algorithm...
Saved in:
| Published in: | Electric power systems research Vol. 207; p. 107858 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.06.2022
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0378-7796, 1873-2046 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Short-term load forecasting (STLF) of power loads involves fractal features, due to complexity of power systems.•Composite linear fractal interpolation function (CLFIF) modeling better captures irregularities and fluctuations of power loads.•Iterative learning (IL) and chimp optimization algorithm (ChOA) are used for adaptive parametrization of CLFIF.•Hybrid CLFIF-IL-ChOA modeling is proposed for STLF, which obtains high accuracy without further relevant data.•Comparisons in between CLFIF-IL-ChOA and others are included; effectiveness of CLFIF-IL-ChOA is verified.
This paper develops a hybrid short-term load forecasting (STLF) modeling with adaptive parametrization, based on composite linear fractal interpolation function (CLFIF), iterative learning (IL) and chimp optimization algorithm (ChOA). More precisely, after selecting similar days in power load data, an amendatory CLFIF model is constructed for an-hour-ahead prediction in terms of hourly load curves. Then, iterative learning based on ChOA optimizes the parameters of the amendatory CLFIF model with higher accuracy. Moreover, to confirm effectiveness of the CLFIF-IL-ChOA model, numerical examples are tested on the historical power load data from PJM and ENTSOE. The numerical results show that the proposed method can obtain higher accuracy, compared to some common methods about time series analysis. |
|---|---|
| AbstractList | •Short-term load forecasting (STLF) of power loads involves fractal features, due to complexity of power systems.•Composite linear fractal interpolation function (CLFIF) modeling better captures irregularities and fluctuations of power loads.•Iterative learning (IL) and chimp optimization algorithm (ChOA) are used for adaptive parametrization of CLFIF.•Hybrid CLFIF-IL-ChOA modeling is proposed for STLF, which obtains high accuracy without further relevant data.•Comparisons in between CLFIF-IL-ChOA and others are included; effectiveness of CLFIF-IL-ChOA is verified.
This paper develops a hybrid short-term load forecasting (STLF) modeling with adaptive parametrization, based on composite linear fractal interpolation function (CLFIF), iterative learning (IL) and chimp optimization algorithm (ChOA). More precisely, after selecting similar days in power load data, an amendatory CLFIF model is constructed for an-hour-ahead prediction in terms of hourly load curves. Then, iterative learning based on ChOA optimizes the parameters of the amendatory CLFIF model with higher accuracy. Moreover, to confirm effectiveness of the CLFIF-IL-ChOA model, numerical examples are tested on the historical power load data from PJM and ENTSOE. The numerical results show that the proposed method can obtain higher accuracy, compared to some common methods about time series analysis. This paper develops a hybrid short-term load forecasting (STLF) modeling with adaptive parametrization, based on composite linear fractal interpolation function (CLFIF), iterative learning (IL) and chimp optimization algorithm (ChOA). More precisely, after selecting similar days in power load data, an amendatory CLFIF model is constructed for an-hour-ahead prediction in terms of hourly load curves. Then, iterative learning based on ChOA optimizes the parameters of the amendatory CLFIF model with higher accuracy. Moreover, to confirm effectiveness of the CLFIF-IL-ChOA model, numerical examples are tested on the historical power load data from PJM and ENTSOE. The numerical results show that the proposed method can obtain higher accuracy, compared to some common methods about time series analysis. |
| ArticleNumber | 107858 |
| Author | Li, Xiaolan Zhou, Jun |
| Author_xml | – sequence: 1 givenname: Xiaolan surname: Li fullname: Li, Xiaolan email: lixiaolan@hhu.edu.cn – sequence: 2 givenname: Jun surname: Zhou fullname: Zhou, Jun email: zhouj@lzu.edu.cn |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8CXncm6Zqm4M0YfsFABL0OaXLqUtqmJtlk_96WeuXFrg68vM85nGeBZp3rAKFbSlaUUH5fr6APfsUIY0OQi0xcoDkVeZowsuYzNCdpLpI8L_gVWoRQE0J4kWdz9L7psDKqj_YIeH8qvTW48kpH1eDWGWhw5TwOe-djEsG3uHHKjBloFaLtvrDtcO9-YCidQoQ2XKPLSjUBbv7mEn0-PX5sX5Ld2_PrdrNLdMpETIBy4FnJeKlLAiojWrC1qRjogoIglRGamlTQSlOapxVZE26oErwwOis4TdMlupv29t59HyBEWbuD74aTkvGCZ4MGQoeWmFrauxA8VFLbqKJ1XfTKNpISOQqUtRwFylGgnAQOKPuH9t62yp_OQw8TBMPrRwteBm2h02DsoCxK4-w5_BcV9Ixs |
| CitedBy_id | crossref_primary_10_1007_s10614_025_11026_8 crossref_primary_10_32604_cmes_2023_025396 crossref_primary_10_3390_s22124363 crossref_primary_10_1016_j_energy_2024_131459 crossref_primary_10_1088_1742_6596_2781_1_012002 |
| Cites_doi | 10.1016/S0196-8904(02)00225-X 10.1109/TPWRS.2005.860944 10.1109/59.99410 10.1109/59.780934 10.1016/S0378-4754(99)00119-6 10.1016/j.apenergy.2018.04.075 10.1142/S0129065704002078 10.3390/en11051282 10.3390/en13092370 10.1016/j.eswa.2020.113338 10.1142/S0217984920501146 10.1016/j.apenergy.2020.116415 10.1016/j.ijepes.2012.06.009 10.1016/j.eswa.2009.08.019 10.1016/j.ijepes.2014.12.087 10.1016/j.asoc.2011.07.001 10.1016/S0378-7796(03)00150-0 10.1002/2050-7038.12103 10.1016/j.energy.2016.08.023 10.1016/j.eswa.2007.09.031 10.1016/j.energy.2013.04.027 10.1002/2050-7038.12709 10.1016/j.energy.2020.117514 10.1016/S0378-7796(02)00097-4 10.1016/j.solener.2013.12.006 10.1109/78.143444 10.1016/j.energy.2017.05.126 10.1016/j.epsr.2019.106191 10.3390/en11071899 10.1016/j.enconman.2013.02.010 10.1016/j.chaos.2012.06.009 10.1016/j.neucom.2006.05.020 10.1016/j.energy.2017.12.156 10.1016/j.epsr.2016.08.031 10.1016/j.epsr.2015.09.001 10.1016/j.ijepes.2012.09.002 10.1007/BF01893434 10.1016/j.energy.2017.12.083 10.1109/59.41700 10.1109/TPWRS.2004.835632 10.1016/j.apenergy.2017.03.034 10.1109/TPWRS.2007.907583 10.1016/j.energy.2019.116847 10.14257/ijca.2015.8.8.19 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier Science Ltd. Jun 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jun 2022 |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.epsr.2022.107858 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| ExternalDocumentID | 10_1016_j_epsr_2022_107858 S0378779622000888 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c328t-e16e65b26bcb0ea50c824df2ec91e80fd8c1d381fc1173f0406d1a869dc596133 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793768600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sun Nov 09 07:12:19 EST 2025 Tue Nov 18 21:24:53 EST 2025 Sat Nov 29 07:10:46 EST 2025 Fri Feb 23 02:41:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chimp optimization algorithm Adaptive Composite linear fractal interpolation function Short-term load forecasting Iterative learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-e16e65b26bcb0ea50c824df2ec91e80fd8c1d381fc1173f0406d1a869dc596133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2696510701 |
| PQPubID | 2047565 |
| ParticipantIDs | proquest_journals_2696510701 crossref_citationtrail_10_1016_j_epsr_2022_107858 crossref_primary_10_1016_j_epsr_2022_107858 elsevier_sciencedirect_doi_10_1016_j_epsr_2022_107858 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Salmi, Kiljander, Pakkala (bib0036) 2020; 13 Tarsitano, Amerise (bib0009) 2017; 133 Tavassoli-Hojati, Ghaderi, Iranmanesh (bib0030) 2020; 199 Zheng, Gu, Jin, Peng, Zhu (bib0007) 2020; 30 Chen, Xu, Chu, Li, Wu, Ni, Bao, Wang (bib0049) 2017; 195 Kang, Xia, Liu (bib0006) 2017 Hsu, Chen (bib0051) 2003; 44 Song, Cattani, Chi (bib0046) 2020; 194 Mazel, Hayes (bib0042) 1992; 40 Dudek (bib0014) 2016; 130 Sun, Zhang (bib0032) 2018; 11 Wang, Jia, Zhao, Wu, Dong (bib0043) 2012; 45 Aly (bib0039) 2020; 182 Niu, Shi, Wu (bib0018) 2012; 12 Zhou, Li, Ren (bib0047) 2020 Zamo, Mestre, Arbogast, Pannekoucke (bib0013) 2014; 105 Wu, Wang, Lu, Dong, Lu (bib0012) 2013; 70 Fang, Shen, Li (bib0035) 2020; 34 Hooshmand, Amooshahi, Parastegari (bib0031) 2013; 45 Fan, Peng, Hong (bib0002) 2018; 224 Dong, Yang, Reindl, Walsh (bib0016) 2013; 55 Hu, Qu, Wang (bib0038) 2021; 285 Barnsley (bib0041) 1986; 2 Tian, Noore (bib0024) 2004; 14 Mastorocostas, Theocharis, Kiartzis, Bakirtzis (bib0028) 2000; 51 He, Xu, Wan, Yang (bib0001) 2016; 114 Kelo, Dudul (bib0020) 2012; 43 Zhai (bib0045) 2015; 69 Karimi, Karami, Gholami, Khatibzadehazad, Moslemi (bib0003) 2018; 144 Barman, Choudhury, Sutradhar (bib0004) 2018; 145 Taylor, McSharry (bib0010) 2007; 22 Boroojeni, Amini, Bahrami, Iyengar, Sarwat, Karabasoglu (bib0011) 2017; 142 Hwan, Kim (bib0027) 2001; volume 1 Niu, Wang, Wu (bib0025) 2010; 37 Kim, Yu, Song (bib0022) 2002; 63 Khishe, Mosavi (bib0048) 2020; 149 Xiao, Ye, Zhong, Sun (bib0021) 2009; 36 Moghram, Rahman (bib0019) 1989; 4 Srinivasan, Tan, Chang, Chan (bib0023) 1999; 14 Papalexopoulos, Hesterberg (bib0015) 1990; 5 Manderbrot (bib0040) 1982 Massaoudi, Refaat, Chihi (bib0034) 2020 Jiang (bib0026) 2015; 8 Lin, Xue, Hu, Huang (bib0005) 2018; 11 Fan, Chen (bib0008) 2006; 21 Palma (bib0050) 2016 Ulagammai, Venkatesh, Kannan, Padhy (bib0033) 2007; 70 Li, Zhou (bib0044) 2021; 31 Wang, Zheng, Wang (bib0037) 2021 Al-Hamadi, Soliman (bib0017) 2004; 68 Song, Baek, Hong, Jang (bib0029) 2005; 20 Manderbrot (10.1016/j.epsr.2022.107858_bib0040) 1982 Srinivasan (10.1016/j.epsr.2022.107858_bib0023) 1999; 14 Moghram (10.1016/j.epsr.2022.107858_bib0019) 1989; 4 Zhai (10.1016/j.epsr.2022.107858_bib0045) 2015; 69 He (10.1016/j.epsr.2022.107858_bib0001) 2016; 114 Kelo (10.1016/j.epsr.2022.107858_bib0020) 2012; 43 Hwan (10.1016/j.epsr.2022.107858_bib0027) 2001; volume 1 Dudek (10.1016/j.epsr.2022.107858_bib0014) 2016; 130 Wang (10.1016/j.epsr.2022.107858_bib0043) 2012; 45 Mastorocostas (10.1016/j.epsr.2022.107858_bib0028) 2000; 51 Niu (10.1016/j.epsr.2022.107858_bib0025) 2010; 37 Khishe (10.1016/j.epsr.2022.107858_bib0048) 2020; 149 Wu (10.1016/j.epsr.2022.107858_bib0012) 2013; 70 Taylor (10.1016/j.epsr.2022.107858_bib0010) 2007; 22 Papalexopoulos (10.1016/j.epsr.2022.107858_bib0015) 1990; 5 Fan (10.1016/j.epsr.2022.107858_bib0008) 2006; 21 Palma (10.1016/j.epsr.2022.107858_bib0050) 2016 Barman (10.1016/j.epsr.2022.107858_bib0004) 2018; 145 Fan (10.1016/j.epsr.2022.107858_bib0002) 2018; 224 Boroojeni (10.1016/j.epsr.2022.107858_bib0011) 2017; 142 Tian (10.1016/j.epsr.2022.107858_bib0024) 2004; 14 Ulagammai (10.1016/j.epsr.2022.107858_bib0033) 2007; 70 Tavassoli-Hojati (10.1016/j.epsr.2022.107858_bib0030) 2020; 199 Li (10.1016/j.epsr.2022.107858_sbref0044) 2021; 31 Hooshmand (10.1016/j.epsr.2022.107858_bib0031) 2013; 45 Xiao (10.1016/j.epsr.2022.107858_bib0021) 2009; 36 Aly (10.1016/j.epsr.2022.107858_bib0039) 2020; 182 Kim (10.1016/j.epsr.2022.107858_bib0022) 2002; 63 Hsu (10.1016/j.epsr.2022.107858_bib0051) 2003; 44 Karimi (10.1016/j.epsr.2022.107858_bib0003) 2018; 144 Chen (10.1016/j.epsr.2022.107858_bib0049) 2017; 195 Salmi (10.1016/j.epsr.2022.107858_bib0036) 2020; 13 Massaoudi (10.1016/j.epsr.2022.107858_bib0034) 2020 Song (10.1016/j.epsr.2022.107858_bib0029) 2005; 20 Fang (10.1016/j.epsr.2022.107858_bib0035) 2020; 34 Lin (10.1016/j.epsr.2022.107858_bib0005) 2018; 11 Zhou (10.1016/j.epsr.2022.107858_bib0047) 2020 Mazel (10.1016/j.epsr.2022.107858_bib0042) 1992; 40 Tarsitano (10.1016/j.epsr.2022.107858_bib0009) 2017; 133 Zamo (10.1016/j.epsr.2022.107858_bib0013) 2014; 105 Sun (10.1016/j.epsr.2022.107858_bib0032) 2018; 11 Jiang (10.1016/j.epsr.2022.107858_bib0026) 2015; 8 Hu (10.1016/j.epsr.2022.107858_bib0038) 2021; 285 Barnsley (10.1016/j.epsr.2022.107858_bib0041) 1986; 2 Al-Hamadi (10.1016/j.epsr.2022.107858_bib0017) 2004; 68 Song (10.1016/j.epsr.2022.107858_bib0046) 2020; 194 Kang (10.1016/j.epsr.2022.107858_bib0006) 2017 Zheng (10.1016/j.epsr.2022.107858_sbref0007) 2020; 30 Niu (10.1016/j.epsr.2022.107858_bib0018) 2012; 12 Dong (10.1016/j.epsr.2022.107858_bib0016) 2013; 55 Wang (10.1016/j.epsr.2022.107858_bib0037) 2021 |
| References_xml | – volume: 14 start-page: 1100 year: 1999 end-page: 1105 ident: bib0023 article-title: Parallel neural network-fuzzy expert system strategy for short-term load forecasting : system implementation and performance evaluation publication-title: IEEE Trans. Power Syst. – year: 2021 ident: bib0037 article-title: Household electricity load forecasting based on multitask convolutional neural network with profile encoding publication-title: Math. Probl. Eng. – volume: 70 start-page: 1 year: 2013 end-page: 9 ident: bib0012 article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model publication-title: Energy Convers. Manag. – volume: 70 start-page: 2659 year: 2007 end-page: 2667 ident: bib0033 article-title: Application of bacterial foraging technique trained artificial and wavelet neural networks in load forecasting publication-title: Neurocomputing – volume: 149 start-page: 113338 year: 2020 ident: bib0048 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. – volume: 11 start-page: 1899 year: 2018 ident: bib0005 article-title: Modular predictor for day-ahead load forecasting and feature selection for different hours publication-title: Energies – volume: volume 1 start-page: 112 year: 2001 end-page: 116 ident: bib0027 article-title: A short-term load forecasting expert system publication-title: Proceedings of the 5th Russia-Korean International Symposium on Science and Technology-Proceedings: KORUS 2001 – volume: 105 start-page: 792 year: 2014 end-page: 803 ident: bib0013 article-title: A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, Part I : deterministic forecast of hourly production publication-title: Sol. Energy – volume: 130 start-page: 139 year: 2016 end-page: 147 ident: bib0014 article-title: Pattern-based local linear regression models for short-term load forecasting publication-title: Electr. Power Syst. Res. – volume: 14 start-page: 329 year: 2004 end-page: 335 ident: bib0024 article-title: A novel approach for short-term load forecasting using support vector machines publication-title: Int. J. Neural Syst. – volume: 12 start-page: 1822 year: 2012 end-page: 1827 ident: bib0018 article-title: Short-term load forecasting using Bayesian neural networks learned by hybrid Monte Carlo algorithm publication-title: Appl. Soft Comput. – volume: 224 start-page: 13 year: 2018 end-page: 33 ident: bib0002 article-title: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model publication-title: Appl. Energy – volume: 20 start-page: 96 year: 2005 end-page: 101 ident: bib0029 article-title: Short-term load forecasting for the holidays using fuzzy linear regression method publication-title: IEEE Trans. Power Syst. – year: 1982 ident: bib0040 article-title: The Fractal Geometry of Nature – volume: 51 start-page: 221 year: 2000 end-page: 232 ident: bib0028 article-title: A hybrid fuzzy modeling method for short-term load forecasting publication-title: Math. Comput. Simul. – volume: 195 start-page: 659 year: 2017 end-page: 670 ident: bib0049 article-title: Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings publication-title: Appl. Energy – volume: 44 start-page: 1941 year: 2003 end-page: 1949 ident: bib0051 article-title: Regional load forecasting in Taiwan - applications of artificial neural networks publication-title: Energy Convers. Manag. – volume: 43 start-page: 1063 year: 2012 end-page: 1071 ident: bib0020 article-title: A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature publication-title: Int. J. Electr. Power Energy Syst. – volume: 22 start-page: 2213 year: 2007 end-page: 2219 ident: bib0010 article-title: Short-term load forecasting methods: an evaluation based on european data publication-title: IEEE Trans. Power Syst. – volume: 45 start-page: 1277 year: 2012 end-page: 1287 ident: bib0043 article-title: Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting publication-title: Chaos Solitons Fractals – volume: 69 start-page: 241 year: 2015 end-page: 245 ident: bib0045 article-title: A new method for short-term load forecasting based on fractal interpretation and wavelet analysis publication-title: Int. J. Electr. Power Energy Syst. – year: 2016 ident: bib0050 article-title: Time Series Analysis – volume: 199 start-page: 117514 year: 2020 ident: bib0030 article-title: A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids publication-title: Energy – volume: 36 start-page: 273 year: 2009 end-page: 279 ident: bib0021 article-title: BP neural network with rough set for short term load forecasting publication-title: Expert Syst. Appl. – volume: 8 start-page: 181 year: 2015 end-page: 188 ident: bib0026 article-title: Study on short-term load forecasting method based on the PSO and SVM model publication-title: Int. J. Control Autom. – volume: 2 start-page: 303 year: 1986 end-page: 329 ident: bib0041 article-title: Fractal functions and interpolation publication-title: Constr. Approx. – volume: 114 start-page: 498 year: 2016 end-page: 512 ident: bib0001 article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function publication-title: Energy – volume: 285 start-page: 116415 year: 2021 ident: bib0038 article-title: Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning publication-title: Appl. Energy – volume: 182 start-page: 106191 year: 2020 ident: bib0039 article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid publication-title: Electr. Power Syst. Res. – volume: 133 start-page: 108 year: 2017 end-page: 114 ident: bib0009 article-title: Short-term load forecasting using a two-stage sarimax model publication-title: Energy – start-page: 118874 year: 2020 ident: bib0034 article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting publication-title: Energy – volume: 21 start-page: 392 year: 2006 end-page: 401 ident: bib0008 article-title: Short-term load forecasting based on an adaptive hybrid method publication-title: IEEE Trans. Power Syst. – volume: 194 start-page: 116847 year: 2020 ident: bib0046 article-title: Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: an integrated approach publication-title: Energy – volume: 55 start-page: 1104 year: 2013 end-page: 1113 ident: bib0016 article-title: Short-term solar irradiance forecasting using exponential smoothing state space model publication-title: Energy – volume: 31 start-page: e12709 year: 2021 ident: bib0044 article-title: Short-term power load fitting/forecasting based on composite modified fractal interpolation approaches publication-title: Int. Trans. Electr. Energy Syst. – volume: 37 start-page: 2531 year: 2010 end-page: 2539 ident: bib0025 article-title: Power load forecasting using support vector machine and ant colony optimization publication-title: Expert Syst. Appl. – volume: 13 start-page: 2370 year: 2020 ident: bib0036 article-title: Stacked boosters network architecture for short-term load forecasting in buildings publication-title: Energies – year: 2020 ident: bib0047 article-title: Power-load fault diagnosis by fractal similarity analysis publication-title: Proceedings of the 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference, September 20-23, 2020, Nanjing, China – volume: 68 start-page: 47 year: 2004 end-page: 59 ident: bib0017 article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model publication-title: Electr. Power Syst. Res. – volume: 5 start-page: 1535 year: 1990 end-page: 1547 ident: bib0015 article-title: A regression-based approach to short-term system load forecasting publication-title: IEEE Trans. Power Syst. – volume: 63 start-page: 169 year: 2002 end-page: 176 ident: bib0022 article-title: Kohonen neural network and wavelet transform based approach to short-term load forecasting publication-title: Electr. Power Syst. Res. – volume: 45 start-page: 313 year: 2013 end-page: 324 ident: bib0031 article-title: A hybrid intelligent algorithm based short-term load forecasting approach publication-title: Int. J. Electr. Power Energy Syst. – volume: 40 start-page: 1724 year: 1992 end-page: 1734 ident: bib0042 article-title: Using iterated function systems to model discrete sequences publication-title: IEEE Trans. Signal Process. – volume: 34 start-page: 2050114 year: 2020 ident: bib0035 article-title: An efficient power load forecasting model based on the optimized combination publication-title: Mod. Phys. Lett. B – year: 2017 ident: bib0006 article-title: Power System Load Forecasting – volume: 144 start-page: 928 year: 2018 end-page: 940 ident: bib0003 article-title: Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method publication-title: Energy – volume: 142 start-page: 58 year: 2017 end-page: 73 ident: bib0011 article-title: A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon publication-title: Electr. Power Syst. Res. – volume: 145 start-page: 710 year: 2018 end-page: 720 ident: bib0004 article-title: A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India publication-title: Energy – volume: 11 start-page: 1282 year: 2018 ident: bib0032 article-title: A hybrid BA-ELM model based on factor analysis and similar-day approach for short-term load forecasting publication-title: Energies – volume: 30 year: 2020 ident: bib0007 article-title: Load forecasting under data corruption based on anomaly detection and combined robust regression publication-title: Int. Trans. Electr. Energy Syst. – volume: 4 start-page: 1484 year: 1989 end-page: 1491 ident: bib0019 article-title: Analysis and evaluation of five short-term load forecasting techniques publication-title: IEEE Trans. Power Syst. – volume: 44 start-page: 1941 issue: 12 year: 2003 ident: 10.1016/j.epsr.2022.107858_bib0051 article-title: Regional load forecasting in Taiwan - applications of artificial neural networks publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(02)00225-X – volume: 21 start-page: 392 issue: 1 year: 2006 ident: 10.1016/j.epsr.2022.107858_bib0008 article-title: Short-term load forecasting based on an adaptive hybrid method publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.860944 – volume: 5 start-page: 1535 issue: 4 year: 1990 ident: 10.1016/j.epsr.2022.107858_bib0015 article-title: A regression-based approach to short-term system load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.99410 – volume: 14 start-page: 1100 issue: 3 year: 1999 ident: 10.1016/j.epsr.2022.107858_bib0023 article-title: Parallel neural network-fuzzy expert system strategy for short-term load forecasting : system implementation and performance evaluation publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.780934 – volume: 51 start-page: 221 issue: 3-4 year: 2000 ident: 10.1016/j.epsr.2022.107858_bib0028 article-title: A hybrid fuzzy modeling method for short-term load forecasting publication-title: Math. Comput. Simul. doi: 10.1016/S0378-4754(99)00119-6 – start-page: 118874 year: 2020 ident: 10.1016/j.epsr.2022.107858_bib0034 article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting publication-title: Energy – volume: 224 start-page: 13 year: 2018 ident: 10.1016/j.epsr.2022.107858_bib0002 article-title: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.075 – volume: 14 start-page: 329 issue: 5 year: 2004 ident: 10.1016/j.epsr.2022.107858_bib0024 article-title: A novel approach for short-term load forecasting using support vector machines publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704002078 – volume: volume 1 start-page: 112 year: 2001 ident: 10.1016/j.epsr.2022.107858_bib0027 article-title: A short-term load forecasting expert system – volume: 11 start-page: 1282 issue: 5 year: 2018 ident: 10.1016/j.epsr.2022.107858_bib0032 article-title: A hybrid BA-ELM model based on factor analysis and similar-day approach for short-term load forecasting publication-title: Energies doi: 10.3390/en11051282 – volume: 13 start-page: 2370 issue: 9 year: 2020 ident: 10.1016/j.epsr.2022.107858_bib0036 article-title: Stacked boosters network architecture for short-term load forecasting in buildings publication-title: Energies doi: 10.3390/en13092370 – volume: 149 start-page: 113338 year: 2020 ident: 10.1016/j.epsr.2022.107858_bib0048 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 34 start-page: 2050114 issue: 16 year: 2020 ident: 10.1016/j.epsr.2022.107858_bib0035 article-title: An efficient power load forecasting model based on the optimized combination publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984920501146 – volume: 285 start-page: 116415 year: 2021 ident: 10.1016/j.epsr.2022.107858_bib0038 article-title: Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116415 – volume: 43 start-page: 1063 issue: 1 year: 2012 ident: 10.1016/j.epsr.2022.107858_bib0020 article-title: A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.06.009 – volume: 37 start-page: 2531 issue: 3 year: 2010 ident: 10.1016/j.epsr.2022.107858_bib0025 article-title: Power load forecasting using support vector machine and ant colony optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.08.019 – volume: 69 start-page: 241 year: 2015 ident: 10.1016/j.epsr.2022.107858_bib0045 article-title: A new method for short-term load forecasting based on fractal interpretation and wavelet analysis publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.12.087 – volume: 12 start-page: 1822 issue: 6 year: 2012 ident: 10.1016/j.epsr.2022.107858_bib0018 article-title: Short-term load forecasting using Bayesian neural networks learned by hybrid Monte Carlo algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.07.001 – volume: 68 start-page: 47 issue: 1 year: 2004 ident: 10.1016/j.epsr.2022.107858_bib0017 article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model publication-title: Electr. Power Syst. Res. doi: 10.1016/S0378-7796(03)00150-0 – volume: 30 issue: 7 year: 2020 ident: 10.1016/j.epsr.2022.107858_sbref0007 article-title: Load forecasting under data corruption based on anomaly detection and combined robust regression publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/2050-7038.12103 – volume: 114 start-page: 498 issue: 1 year: 2016 ident: 10.1016/j.epsr.2022.107858_bib0001 article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function publication-title: Energy doi: 10.1016/j.energy.2016.08.023 – volume: 36 start-page: 273 issue: 1 year: 2009 ident: 10.1016/j.epsr.2022.107858_bib0021 article-title: BP neural network with rough set for short term load forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.09.031 – volume: 55 start-page: 1104 year: 2013 ident: 10.1016/j.epsr.2022.107858_bib0016 article-title: Short-term solar irradiance forecasting using exponential smoothing state space model publication-title: Energy doi: 10.1016/j.energy.2013.04.027 – year: 2020 ident: 10.1016/j.epsr.2022.107858_bib0047 article-title: Power-load fault diagnosis by fractal similarity analysis – volume: 31 start-page: e12709 year: 2021 ident: 10.1016/j.epsr.2022.107858_sbref0044 article-title: Short-term power load fitting/forecasting based on composite modified fractal interpolation approaches publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/2050-7038.12709 – volume: 199 start-page: 117514 year: 2020 ident: 10.1016/j.epsr.2022.107858_bib0030 article-title: A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids publication-title: Energy doi: 10.1016/j.energy.2020.117514 – volume: 63 start-page: 169 issue: 3 year: 2002 ident: 10.1016/j.epsr.2022.107858_bib0022 article-title: Kohonen neural network and wavelet transform based approach to short-term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/S0378-7796(02)00097-4 – volume: 105 start-page: 792 year: 2014 ident: 10.1016/j.epsr.2022.107858_bib0013 article-title: A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, Part I : deterministic forecast of hourly production publication-title: Sol. Energy doi: 10.1016/j.solener.2013.12.006 – volume: 40 start-page: 1724 issue: 7 year: 1992 ident: 10.1016/j.epsr.2022.107858_bib0042 article-title: Using iterated function systems to model discrete sequences publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.143444 – volume: 133 start-page: 108 year: 2017 ident: 10.1016/j.epsr.2022.107858_bib0009 article-title: Short-term load forecasting using a two-stage sarimax model publication-title: Energy doi: 10.1016/j.energy.2017.05.126 – year: 2017 ident: 10.1016/j.epsr.2022.107858_bib0006 – volume: 182 start-page: 106191 year: 2020 ident: 10.1016/j.epsr.2022.107858_bib0039 article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2019.106191 – volume: 11 start-page: 1899 issue: 7 year: 2018 ident: 10.1016/j.epsr.2022.107858_bib0005 article-title: Modular predictor for day-ahead load forecasting and feature selection for different hours publication-title: Energies doi: 10.3390/en11071899 – volume: 70 start-page: 1 year: 2013 ident: 10.1016/j.epsr.2022.107858_bib0012 article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.02.010 – volume: 45 start-page: 1277 issue: 9-10 year: 2012 ident: 10.1016/j.epsr.2022.107858_bib0043 article-title: Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2012.06.009 – volume: 70 start-page: 2659 issue: 16-18 year: 2007 ident: 10.1016/j.epsr.2022.107858_bib0033 article-title: Application of bacterial foraging technique trained artificial and wavelet neural networks in load forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.05.020 – year: 1982 ident: 10.1016/j.epsr.2022.107858_bib0040 – volume: 145 start-page: 710 year: 2018 ident: 10.1016/j.epsr.2022.107858_bib0004 article-title: A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India publication-title: Energy doi: 10.1016/j.energy.2017.12.156 – volume: 142 start-page: 58 year: 2017 ident: 10.1016/j.epsr.2022.107858_bib0011 article-title: A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.08.031 – volume: 130 start-page: 139 year: 2016 ident: 10.1016/j.epsr.2022.107858_bib0014 article-title: Pattern-based local linear regression models for short-term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.09.001 – volume: 45 start-page: 313 issue: 1 year: 2013 ident: 10.1016/j.epsr.2022.107858_bib0031 article-title: A hybrid intelligent algorithm based short-term load forecasting approach publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.09.002 – volume: 2 start-page: 303 issue: 1 year: 1986 ident: 10.1016/j.epsr.2022.107858_bib0041 article-title: Fractal functions and interpolation publication-title: Constr. Approx. doi: 10.1007/BF01893434 – volume: 144 start-page: 928 year: 2018 ident: 10.1016/j.epsr.2022.107858_bib0003 article-title: Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method publication-title: Energy doi: 10.1016/j.energy.2017.12.083 – volume: 4 start-page: 1484 issue: 4 year: 1989 ident: 10.1016/j.epsr.2022.107858_bib0019 article-title: Analysis and evaluation of five short-term load forecasting techniques publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.41700 – volume: 20 start-page: 96 issue: 1 year: 2005 ident: 10.1016/j.epsr.2022.107858_bib0029 article-title: Short-term load forecasting for the holidays using fuzzy linear regression method publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2004.835632 – year: 2016 ident: 10.1016/j.epsr.2022.107858_bib0050 – volume: 195 start-page: 659 year: 2017 ident: 10.1016/j.epsr.2022.107858_bib0049 article-title: Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.034 – volume: 22 start-page: 2213 issue: 4 year: 2007 ident: 10.1016/j.epsr.2022.107858_bib0010 article-title: Short-term load forecasting methods: an evaluation based on european data publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2007.907583 – year: 2021 ident: 10.1016/j.epsr.2022.107858_bib0037 article-title: Household electricity load forecasting based on multitask convolutional neural network with profile encoding publication-title: Math. Probl. Eng. – volume: 194 start-page: 116847 year: 2020 ident: 10.1016/j.epsr.2022.107858_bib0046 article-title: Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: an integrated approach publication-title: Energy doi: 10.1016/j.energy.2019.116847 – volume: 8 start-page: 181 issue: 8 year: 2015 ident: 10.1016/j.epsr.2022.107858_bib0026 article-title: Study on short-term load forecasting method based on the PSO and SVM model publication-title: Int. J. Control Autom. doi: 10.14257/ijca.2015.8.8.19 |
| SSID | ssj0006975 |
| Score | 2.3880477 |
| Snippet | •Short-term load forecasting (STLF) of power loads involves fractal features, due to complexity of power systems.•Composite linear fractal interpolation... This paper develops a hybrid short-term load forecasting (STLF) modeling with adaptive parametrization, based on composite linear fractal interpolation... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107858 |
| SubjectTerms | Adaptive Algorithms Chimp optimization algorithm Composite linear fractal interpolation function Electricity distribution Forecasting Fractal models Fractals Interpolation Iterative learning Iterative methods Machine learning Model accuracy Numerical analysis Optimization Optimization algorithms Parameterization Short-term load forecasting Time series |
| Title | An adaptive hybrid fractal model for short-term load forecasting in power systems |
| URI | https://dx.doi.org/10.1016/j.epsr.2022.107858 https://www.proquest.com/docview/2696510701 |
| Volume | 207 |
| WOSCitedRecordID | wos000793768600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pi9QwFA4660EP4k92dZUcvA2FJk2T9DjIioosiisMXkqbH8wsS2fYzsr63_teknZnZ3FRwUspoW1KvjR57_V93yPkjctV640UmWg1OCiuyDPNlMukxf9o3pbeN6HYhDo-1vN59TlV6etDOQHVdfryslr_V6ihDcBG6uxfwD0-FBrgHECHI8AOxz8CftZNG9usQ0rQ4icSsqYeqVBIE8GyNyGxsF-A2Z3hsjw9WzUW25xp-k1iuKyxdlpSee6vBe9D1ZyluX7FNEkGjaHlTyFHYL5swHEeZ9_3xeoiEkG67VgDuKljTlQMgN0gwUTiFTiiSlVJ0Tquo1oVgEqKLqaFlsf6tjcW7Rg_OIX9t0eFVs6hSemo6L4jhv0VO8O-OFKMwHu_S_a4Kis9IXuzD0fzj-MuLKsgsjy-XCJMxdy-3Z5-Z5TsbM_B5jh5RB4mZ4HOIsiPyR3XPSEPtiQkn5Ivs44OcNMIN01w0wA3BWjpFdwU4aZbcNNlRwOYNIH5jHx7d3Ty9n2WymRkpuB6kzkmnSxbLlvT5q4pc6O5sJ47UzGnc2-1YRYMM28YU4WHVVta1mhZWVNWYM0Vz8mkW3Vun1DFjNDCt0hJEULI1hWildYI1EzgeXlA2DBOtUka8ljK5KwekgVPaxzbGse2jmN7QKbjPeuooHLr1eUw_HWyAaNtV8NsufW-wwGrOn2Mfc1lJWHPUTl78Y-PfUnuX30Hh2SyOb9wr8g982Oz7M9fpzn3C3SEiwQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+hybrid+fractal+model+for+short-term+load+forecasting+in+power+systems&rft.jtitle=Electric+power+systems+research&rft.au=Li%2C+Xiaolan&rft.au=Zhou%2C+Jun&rft.date=2022-06-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=207&rft_id=info:doi/10.1016%2Fj.epsr.2022.107858&rft.externalDocID=S0378779622000888 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |