A hesitant fuzzy wind speed forecasting system with novel defuzzification method and multi-objective optimization algorithm

•A novel hesitant fuzzy wind speed forecasting system is proposed for the first time.•Multi-fuzzification methods are proposed to deal with the non-determinism problem.•The weights of intervals are determined by multi-objective optimization algorithm.•A new defuzzification model is developed to obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 168; S. 114364
Hauptverfasser: Wang, Jianzhou, Li, Hongmin, Wang, Ying, Lu, Haiyan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 15.04.2021
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel hesitant fuzzy wind speed forecasting system is proposed for the first time.•Multi-fuzzification methods are proposed to deal with the non-determinism problem.•The weights of intervals are determined by multi-objective optimization algorithm.•A new defuzzification model is developed to obtain accurate and reliable forecasts.•The proposed system outperforms comparison models with high accuracy and efficiency. Owing to the nondeterministic nature of wind speed, the conventional fuzzy time series forecasting model has difficulty in establishing a common membership level. Therefore, in this study, the fuzzy series forecasting model was improved based on hesitant fuzzy sets. A hesitant fuzzy wind speed forecasting system with a novel defuzzification method and multiobjective optimization algorithm was developed. First, an advanced decomposition model is employed to extract the effective feature and remove the noise component from the raw wind speed series. Then, the universe of discourse is partitioned into equal and unequal intervals by multifuzzification methods and merged by aggregating hesitant information. A multiobjective intelligent optimization algorithm is applied to determine the optimal weights of different intervals accurately and stably. Furthermore, a novel defuzzification model based on an ordered weighted averaging operator and a regular increasing monotone quantifier is proposed to calculate the final forecasting results. The crucial strengths of the developed system are verifying the possibility of enhancing the performance of wind speed forecasting models by improving conventional fuzzy time series forecasting models and integrating them with decomposition models and artificial-intelligence models. Typical wind speed series datasets with different resolutions were selected to evaluate the performance of the proposed system, and experimental results prove that the proposed system outperforms other comparison models with high forecasting accuracy and computing efficiency.
AbstractList •A novel hesitant fuzzy wind speed forecasting system is proposed for the first time.•Multi-fuzzification methods are proposed to deal with the non-determinism problem.•The weights of intervals are determined by multi-objective optimization algorithm.•A new defuzzification model is developed to obtain accurate and reliable forecasts.•The proposed system outperforms comparison models with high accuracy and efficiency. Owing to the nondeterministic nature of wind speed, the conventional fuzzy time series forecasting model has difficulty in establishing a common membership level. Therefore, in this study, the fuzzy series forecasting model was improved based on hesitant fuzzy sets. A hesitant fuzzy wind speed forecasting system with a novel defuzzification method and multiobjective optimization algorithm was developed. First, an advanced decomposition model is employed to extract the effective feature and remove the noise component from the raw wind speed series. Then, the universe of discourse is partitioned into equal and unequal intervals by multifuzzification methods and merged by aggregating hesitant information. A multiobjective intelligent optimization algorithm is applied to determine the optimal weights of different intervals accurately and stably. Furthermore, a novel defuzzification model based on an ordered weighted averaging operator and a regular increasing monotone quantifier is proposed to calculate the final forecasting results. The crucial strengths of the developed system are verifying the possibility of enhancing the performance of wind speed forecasting models by improving conventional fuzzy time series forecasting models and integrating them with decomposition models and artificial-intelligence models. Typical wind speed series datasets with different resolutions were selected to evaluate the performance of the proposed system, and experimental results prove that the proposed system outperforms other comparison models with high forecasting accuracy and computing efficiency.
Owing to the nondeterministic nature of wind speed, the conventional fuzzy time series forecasting model has difficulty in establishing a common membership level. Therefore, in this study, the fuzzy series forecasting model was improved based on hesitant fuzzy sets. A hesitant fuzzy wind speed forecasting system with a novel defuzzification method and multiobjective optimization algorithm was developed. First, an advanced decomposition model is employed to extract the effective feature and remove the noise component from the raw wind speed series. Then, the universe of discourse is partitioned into equal and unequal intervals by multifuzzification methods and merged by aggregating hesitant information. A multiobjective intelligent optimization algorithm is applied to determine the optimal weights of different intervals accurately and stably. Furthermore, a novel defuzzification model based on an ordered weighted averaging operator and a regular increasing monotone quantifier is proposed to calculate the final forecasting results. The crucial strengths of the developed system are verifying the possibility of enhancing the performance of wind speed forecasting models by improving conventional fuzzy time series forecasting models and integrating them with decomposition models and artificial-intelligence models. Typical wind speed series datasets with different resolutions were selected to evaluate the performance of the proposed system, and experimental results prove that the proposed system outperforms other comparison models with high forecasting accuracy and computing efficiency.
ArticleNumber 114364
Author Wang, Ying
Wang, Jianzhou
Li, Hongmin
Lu, Haiyan
Author_xml – sequence: 1
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 2
  givenname: Hongmin
  orcidid: 0000-0002-7554-573X
  surname: Li
  fullname: Li, Hongmin
  email: hongminli0911@126.com
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 3
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 4
  givenname: Haiyan
  orcidid: 0000-0001-5655-0237
  surname: Lu
  fullname: Lu, Haiyan
  organization: Centre for Artificial Intelligence, School of Computer Science, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
BookMark eNp9kE1r3DAQhkVJoZu0f6AnQc7e6sO2bMglhKQNBHJpz0KWRlkZW9pK2g27-fOVcU855DQw8z4z0nOJLnzwgNB3SraU0PbHuIX0qraMsNKgNW_rT2hDO8GrVvT8Am1I34iqpqL-gi5TGgmhghCxQW-3eAfJZeUztofz-YRfnTc47QEMtiGCVik7_4LTKWWYyzTvsA9HmLCBBXDWaZVd8HiGvAsGq4LPhym7Kgwj6OyOgMM-u9md15yaXkIsa-av6LNVU4Jv_-sV-vNw__vuV_X0_PPx7vap0px1uTKm5orbgQPv1TBQzVULFHhr26a2w6CpFdZyEA0THesFUGoUWGtBswGU4lfoet27j-HvAVKWYzhEX05KVveM06brm5Lq1pSOIaUIVuqiZXlxjspNkhK5qJajXFTLRbVcVReUvUP30c0qnj6GblYIytePDqJM2oHXYFyxnqUJ7iP8H_ZVnzM
CitedBy_id crossref_primary_10_3389_fenvs_2022_833374
crossref_primary_10_1016_j_energy_2025_137229
crossref_primary_10_1016_j_future_2024_107565
crossref_primary_10_1016_j_knosys_2021_107789
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_1007_s41748_025_00714_y
crossref_primary_10_1016_j_renene_2022_02_005
crossref_primary_10_3390_systems11020055
crossref_primary_10_1007_s40313_021_00862_2
crossref_primary_10_3390_en17184615
crossref_primary_10_3233_JIFS_230810
crossref_primary_10_3390_atmos13050758
crossref_primary_10_1002_for_2872
crossref_primary_10_1016_j_eswa_2021_116362
crossref_primary_10_3390_s25051628
crossref_primary_10_1002_for_2888
crossref_primary_10_1016_j_egyr_2025_06_039
crossref_primary_10_3390_en16145281
crossref_primary_10_1002_qre_3602
crossref_primary_10_1177_01423312211050296
crossref_primary_10_1016_j_arcontrol_2022_09_002
crossref_primary_10_1016_j_eswa_2022_119063
crossref_primary_10_1016_j_eswa_2021_115997
crossref_primary_10_3390_su14137779
crossref_primary_10_1007_s11356_024_33580_8
crossref_primary_10_1016_j_eswa_2022_118276
crossref_primary_10_1016_j_eswa_2022_118771
crossref_primary_10_1016_j_energy_2022_126179
crossref_primary_10_1016_j_eswa_2023_121966
crossref_primary_10_3390_app15116221
crossref_primary_10_1016_j_jenvman_2021_113951
crossref_primary_10_1371_journal_pone_0286325
crossref_primary_10_1016_j_eswa_2023_122477
crossref_primary_10_1016_j_eswa_2023_120354
crossref_primary_10_1063_5_0050437
crossref_primary_10_3390_math12152347
crossref_primary_10_1007_s00521_023_08807_3
Cites_doi 10.1016/j.asoc.2020.106294
10.1016/j.advengsoft.2017.07.002
10.1016/j.energy.2019.06.132
10.1016/j.apenergy.2019.114259
10.1016/0165-0114(94)90067-1
10.1016/j.jclepro.2019.03.036
10.1109/TSG.2013.2280649
10.1016/j.apenergy.2018.09.012
10.1016/j.jempfin.2018.03.002
10.1016/j.apenergy.2013.08.025
10.1016/j.asoc.2020.106350
10.1016/j.renene.2019.04.157
10.1016/j.apenergy.2017.09.063
10.1016/j.apenergy.2017.04.017
10.1016/j.enconman.2018.03.098
10.1016/j.asoc.2019.105972
10.1016/j.enconman.2019.111975
10.1016/j.eswa.2016.07.044
10.1049/iet-its.2016.0208
10.1016/j.renene.2017.02.014
10.1016/j.energy.2014.08.064
10.1016/j.ijar.2010.09.002
10.1007/s41066-018-00144-4
10.1016/j.renene.2016.10.030
10.1016/0165-0114(93)90372-O
10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z
10.1016/j.asoc.2018.07.030
10.1016/0165-0114(95)00220-0
10.1016/j.knosys.2014.11.003
10.1016/j.jenvman.2019.109855
10.1016/j.renene.2019.01.031
10.1016/j.enconman.2018.02.034
10.1016/j.apm.2019.07.001
10.1109/TPWRS.2017.2787667
10.1016/j.renene.2020.02.016
10.1016/j.apenergy.2020.115561
10.1109/ACCESS.2019.2957062
10.1016/S0165-0114(00)00057-9
10.1016/j.seta.2019.100601
10.1109/JESTPE.2016.2590834
10.1016/j.seta.2018.04.010
10.1016/j.seta.2019.100582
10.1016/j.jocs.2018.05.008
10.1016/j.apenergy.2010.10.031
10.1016/j.ijepes.2020.106056
10.1016/j.ijar.2007.05.006
10.1016/j.apenergy.2019.114137
10.1016/j.enconman.2020.112524
10.1109/21.87068
10.1016/j.asoc.2019.03.035
10.1109/ACCESS.2020.2973746
10.1016/j.renene.2017.09.089
10.1016/j.energy.2019.02.194
10.1016/j.enconman.2020.112869
10.1016/j.ijepes.2015.04.019
10.1016/j.asoc.2019.105587
10.1016/j.apenergy.2018.11.012
10.1016/j.enconman.2019.06.041
10.1016/j.ymssp.2017.03.035
10.1016/j.renene.2014.11.084
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Apr 15, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.114364
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_114364
S0957417420310447
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-dd43a3fb3e39abb1c3a6e1e36f654fbbc1f7ff3e75278297e11daefffec2beaa3
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640552200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 30 05:30:41 EST 2025
Tue Nov 18 22:35:04 EST 2025
Sat Nov 29 07:06:23 EST 2025
Fri Feb 23 02:48:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiobjective optimization algorithm
Hesitant fuzzy sets
Fuzzy time series forecasting
Artificial intelligence
Multifuzzification methods
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-dd43a3fb3e39abb1c3a6e1e36f654fbbc1f7ff3e75278297e11daefffec2beaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5655-0237
0000-0002-7554-573X
PQID 2492315895
PQPubID 2045477
ParticipantIDs proquest_journals_2492315895
crossref_citationtrail_10_1016_j_eswa_2020_114364
crossref_primary_10_1016_j_eswa_2020_114364
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114364
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Du, Wang, Yang, Niu (b0070) 2019; 80
Liu, Cao, Zhang, Wang, Huang, Luo (b0140) 2020; 121
Xu, Liu, Long (b0270) 2020; 37
Tian, Hao, Hu (b0225) 2018; 231
Wu, Wang, Chen, Du, Yang (b0260) 2020; 146
Heng, Wang, Xiao, Lu (b0095) 2017; 208
Singh, Dhiman (b0210) 2018; 27
Cheng, Wang (b0055) 2020; 92
Yang, Wang, Lu, Niu, Du (b0295) 2019; 222
Jiang, Liu (b0110) 2019; 82
Mao, Ling, Chang, Hatziargyriou, Zhang, Ding (b0165) 2016; 4
Chen (b0045) 1996; 81
Yager (b0275) 1988; 18
Zhang, Zhang, Wang, Niu (b0305) 2020; 277
Yager (b0280) 1996; 11
Erdem, Shi (b0075) 2011; 88
Rodrigues Moreno, Gomes da Silva, Cocco Mariani, dos Santos Coelho (b0200) 2020; 213
Jiang, Yang, Heng (b0115) 2019; 235
Aasim, Singh, Mohapatra (b0005) 2019; 136
Xia, Xu (b0265) 2011; 52
Peng, Peng, Fu, Lu, Tang, Wang, Li (b0185) 2020; 207
Liu, Han (b0145) 2008; 48
Yang, Zhu, Li, Li (b0290) 2020; 87
Zhao, Chen, Wu, Chen, Liu (b0315) 2017; 11
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0170) 2017; 114
Ridha, Gomes, Hizam, Mirjalili (b0195) 2020; 153
Liu, Qin, Zhang, Pei, Jiang, Feng, Zhou (b0150) 2020; 260
Ding, Meng (b0060) 2020; 93
Pei, Qin, Zhang, Yao, Wang, Wang, Liu, Jiang, Zhou, Yi (b0180) 2019; 196
Wang, Xiong (b0245) 2014; 76
Guo, Zhang, Liu, Wang (b0085) 2020; 8
Wang, Du, Hao, Ma, Niu, Yang (b0235) 2020; 255
Fei, He (b0080) 2015; 73
Dong, Sun, Li (b0065) 2017; 102
Shukur, Lee (b0205) 2015; 76
Wang, Wei, Wu, Yin (b0250) 2018; 47
Song, Chissom (b0215) 1993; 54
Chen, Zeng, Zhou, Du, Lu (b0035) 2018; 165
Bisht, Kumar (b0010) 2016; 64
Chen, Yu (b0040) 2014; 113
Zhang, Wei, Tan (b0300) 2020; 190
Yan, Zhang, Liu, Han, Li, Lu (b0285) 2018; 33
Physiology, Andrews, Andrews (b0190) 1980; 210
Cai, Zhang, Zheng, Leung (b0025) 2015; 74
Liu, Duan, Chen, Wu (b0135) 2019; 199
Torra, Narukawa (b0230) 2009; 2009
Jahangir, Golkar, Alhameli, Mazouz, Ahmadian, Elkamel (b0105) 2020; 38
Huarng (b0100) 2001; 123
Lee, Baldick (b0120) 2014; 5
He, Chen, Shang, Li, Li, Xu (b0090) 2019; 76
Wang, Li, Lu (b0240) 2018; 71
Cheng, Liu, Bourgeois, Wu, Haupt (b0050) 2017; 107
Li, Zhu, Yang, Li (b0125) 2019; 174
Zhao, Guo, Xiao, Wang, Chi, Guo (b0310) 2017; 197
Campbell, J. Y., & Thompson, S. B. (2008). Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average? | Review of Financial Studies | onAcademic. https://www.onacademic.com/detail/journal_1000037294651810_384a.html.
Liu, Jin, Zuo, Feng (b0160) 2017; 95
Song, Chissom (b0220) 1994; 62
Liu, Jiang, Zhang, Niu (b0155) 2020; 259
Pearre, Swan (b0175) 2018; 27
Wang, Xie, Hu, Xiong (b0255) 2018; 163
Li, Wang, Lu, Guo (b0130) 2018; 116
Bo, Niu, Wang (b0020) 2019; 7
Bisht, Kumar (b0015) 2019; 4
Pearre (10.1016/j.eswa.2020.114364_b0175) 2018; 27
Erdem (10.1016/j.eswa.2020.114364_b0075) 2011; 88
Fei (10.1016/j.eswa.2020.114364_b0080) 2015; 73
Wang (10.1016/j.eswa.2020.114364_b0250) 2018; 47
Bisht (10.1016/j.eswa.2020.114364_b0015) 2019; 4
Chen (10.1016/j.eswa.2020.114364_b0040) 2014; 113
Wang (10.1016/j.eswa.2020.114364_b0235) 2020; 255
Yager (10.1016/j.eswa.2020.114364_b0275) 1988; 18
Xia (10.1016/j.eswa.2020.114364_b0265) 2011; 52
Liu (10.1016/j.eswa.2020.114364_b0160) 2017; 95
He (10.1016/j.eswa.2020.114364_b0090) 2019; 76
Jiang (10.1016/j.eswa.2020.114364_b0110) 2019; 82
Ridha (10.1016/j.eswa.2020.114364_b0195) 2020; 153
Liu (10.1016/j.eswa.2020.114364_b0145) 2008; 48
Chen (10.1016/j.eswa.2020.114364_b0035) 2018; 165
10.1016/j.eswa.2020.114364_b0030
Mao (10.1016/j.eswa.2020.114364_b0165) 2016; 4
Wang (10.1016/j.eswa.2020.114364_b0245) 2014; 76
Rodrigues Moreno (10.1016/j.eswa.2020.114364_b0200) 2020; 213
Peng (10.1016/j.eswa.2020.114364_b0185) 2020; 207
Wang (10.1016/j.eswa.2020.114364_b0240) 2018; 71
Li (10.1016/j.eswa.2020.114364_b0130) 2018; 116
Jiang (10.1016/j.eswa.2020.114364_b0115) 2019; 235
Yager (10.1016/j.eswa.2020.114364_b0280) 1996; 11
Liu (10.1016/j.eswa.2020.114364_b0150) 2020; 260
Yang (10.1016/j.eswa.2020.114364_b0290) 2020; 87
Wu (10.1016/j.eswa.2020.114364_b0260) 2020; 146
Huarng (10.1016/j.eswa.2020.114364_b0100) 2001; 123
Singh (10.1016/j.eswa.2020.114364_b0210) 2018; 27
Dong (10.1016/j.eswa.2020.114364_b0065) 2017; 102
Chen (10.1016/j.eswa.2020.114364_b0045) 1996; 81
Ding (10.1016/j.eswa.2020.114364_b0060) 2020; 93
Cai (10.1016/j.eswa.2020.114364_b0025) 2015; 74
Zhang (10.1016/j.eswa.2020.114364_b0300) 2020; 190
Bisht (10.1016/j.eswa.2020.114364_b0010) 2016; 64
Du (10.1016/j.eswa.2020.114364_b0070) 2019; 80
Wang (10.1016/j.eswa.2020.114364_b0255) 2018; 163
Guo (10.1016/j.eswa.2020.114364_b0085) 2020; 8
Liu (10.1016/j.eswa.2020.114364_b0155) 2020; 259
Mirjalili (10.1016/j.eswa.2020.114364_b0170) 2017; 114
Pei (10.1016/j.eswa.2020.114364_b0180) 2019; 196
Cheng (10.1016/j.eswa.2020.114364_b0050) 2017; 107
Physiology (10.1016/j.eswa.2020.114364_b0190) 1980; 210
Bo (10.1016/j.eswa.2020.114364_b0020) 2019; 7
Shukur (10.1016/j.eswa.2020.114364_b0205) 2015; 76
Torra (10.1016/j.eswa.2020.114364_b0230) 2009; 2009
Zhang (10.1016/j.eswa.2020.114364_b0305) 2020; 277
Aasim (10.1016/j.eswa.2020.114364_b0005) 2019; 136
Zhao (10.1016/j.eswa.2020.114364_b0310) 2017; 197
Heng (10.1016/j.eswa.2020.114364_b0095) 2017; 208
Li (10.1016/j.eswa.2020.114364_b0125) 2019; 174
Cheng (10.1016/j.eswa.2020.114364_b0055) 2020; 92
Yan (10.1016/j.eswa.2020.114364_b0285) 2018; 33
Tian (10.1016/j.eswa.2020.114364_b0225) 2018; 231
Xu (10.1016/j.eswa.2020.114364_b0270) 2020; 37
Jahangir (10.1016/j.eswa.2020.114364_b0105) 2020; 38
Liu (10.1016/j.eswa.2020.114364_b0135) 2019; 199
Lee (10.1016/j.eswa.2020.114364_b0120) 2014; 5
Zhao (10.1016/j.eswa.2020.114364_b0315) 2017; 11
Liu (10.1016/j.eswa.2020.114364_b0140) 2020; 121
Song (10.1016/j.eswa.2020.114364_b0220) 1994; 62
Yang (10.1016/j.eswa.2020.114364_b0295) 2019; 222
Song (10.1016/j.eswa.2020.114364_b0215) 1993; 54
References_xml – volume: 136
  start-page: 758
  year: 2019
  end-page: 768
  ident: b0005
  article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting
  publication-title: Renewable Energy
– volume: 52
  start-page: 395
  year: 2011
  end-page: 407
  ident: b0265
  article-title: Hesitant fuzzy information aggregation in decision making
  publication-title: International Journal of Approximate Reasoning
– volume: 190
  start-page: 115615
  year: 2020
  ident: b0300
  article-title: An adaptive hybrid model for short term wind speed forecasting
  publication-title: Energy
– volume: 33
  start-page: 3276
  year: 2018
  end-page: 3284
  ident: b0285
  article-title: Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping
  publication-title: IEEE Transactions on Power Systems
– volume: 76
  start-page: 717
  year: 2019
  end-page: 740
  ident: b0090
  article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm
  publication-title: Applied Mathematical Modelling
– volume: 81
  start-page: 311
  year: 1996
  end-page: 319
  ident: b0045
  article-title: Forecasting enrollments based on fuzzy time series
  publication-title: Fuzzy Sets and Systems
– volume: 102
  start-page: 241
  year: 2017
  end-page: 257
  ident: b0065
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China
  publication-title: Renewable Energy
– volume: 71
  start-page: 783
  year: 2018
  end-page: 799
  ident: b0240
  article-title: Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China
  publication-title: Applied Soft Computing
– volume: 197
  start-page: 183
  year: 2017
  end-page: 202
  ident: b0310
  article-title: Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method
  publication-title: Applied Energy
– volume: 210
  start-page: 559
  year: 1980
  end-page: 574
  ident: b0190
  article-title: Communication between individuals in salp chains. II. Physiology
  publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences
– volume: 87
  start-page: 105972
  year: 2020
  ident: b0290
  article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight
  publication-title: Applied Soft Computing
– volume: 11
  start-page: 49
  year: 1996
  end-page: 73
  ident: b0280
  article-title: Quantifier guided aggregation using OWA operators
  publication-title: International Journal of Intelligent Systems
– volume: 174
  start-page: 1219
  year: 2019
  end-page: 1237
  ident: b0125
  article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization
  publication-title: Energy
– volume: 277
  start-page: 115561
  year: 2020
  ident: b0305
  article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting
  publication-title: Applied Energy
– volume: 18
  start-page: 183
  year: 1988
  end-page: 190
  ident: b0275
  article-title: On ordered weighted averaging aggregation operators in multicriteria decisionmaking
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 213
  start-page: 112869
  year: 2020
  ident: b0200
  article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network
  publication-title: Energy Conversion and Management
– volume: 11
  start-page: 68
  year: 2017
  end-page: 75
  ident: b0315
  article-title: LSTM network: A deep learning approach for short-term traffic forecast
  publication-title: IET Intelligent Transport Systems
– volume: 199
  start-page: 111975
  year: 2019
  ident: b0135
  article-title: A novel two-stage deep learning wind speed forecasting method with adaptive multiple error corrections and bivariate Dirichlet process mixture model
  publication-title: Energy Conversion and Management
– volume: 82
  start-page: 105587
  year: 2019
  ident: b0110
  article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting
  publication-title: Applied Soft Computing
– volume: 255
  start-page: 109855
  year: 2020
  ident: b0235
  article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting
  publication-title: Journal of Environmental Management
– volume: 62
  start-page: 1
  year: 1994
  end-page: 8
  ident: b0220
  article-title: Forecasting enrollments with fuzzy time series — part II
  publication-title: Fuzzy Sets and Systems
– volume: 48
  start-page: 77
  year: 2008
  end-page: 97
  ident: b0145
  article-title: Orness and parameterized RIM quantifier aggregation with OWA operators: A summary
  publication-title: International Journal of Approximate Reasoning
– volume: 4
  start-page: 655
  year: 2019
  end-page: 669
  ident: b0015
  article-title: Hesitant fuzzy set based computational method for financial time series forecasting
  publication-title: Granular Computing
– volume: 207
  start-page: 112524
  year: 2020
  ident: b0185
  article-title: A novel deep learning ensemble model with data denoising for short-term wind speed forecasting
  publication-title: Energy Conversion and Management
– volume: 231
  start-page: 301
  year: 2018
  end-page: 319
  ident: b0225
  article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
  publication-title: Applied Energy
– volume: 93
  start-page: 106350
  year: 2020
  ident: b0060
  article-title: Point and interval forecasting for wind speed based on linear component extraction
  publication-title: Applied Soft Computing
– volume: 95
  start-page: 468
  year: 2017
  end-page: 487
  ident: b0160
  article-title: Time-frequency representation based on robust local mean decomposition for multicomponent AM-FM signal analysis
  publication-title: Mechanical Systems and Signal Processing
– volume: 73
  start-page: 625
  year: 2015
  end-page: 631
  ident: b0080
  article-title: Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine
  publication-title: International Journal of Electrical Power & Energy Systems
– reference: Campbell, J. Y., & Thompson, S. B. (2008). Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average? | Review of Financial Studies | onAcademic. https://www.onacademic.com/detail/journal_1000037294651810_384a.html.
– volume: 121
  start-page: 106056
  year: 2020
  ident: b0140
  article-title: Short-term wind speed forecasting based on the Jaya-SVM model
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 259
  start-page: 114137
  year: 2020
  ident: b0155
  article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting
  publication-title: Applied Energy
– volume: 27
  start-page: 180
  year: 2018
  end-page: 191
  ident: b0175
  article-title: Statistical approach for improved wind speed forecasting for wind power production
  publication-title: Sustainable Energy Technologies and Assessments
– volume: 165
  start-page: 681
  year: 2018
  end-page: 695
  ident: b0035
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Conversion and Management
– volume: 64
  start-page: 557
  year: 2016
  end-page: 568
  ident: b0010
  article-title: Fuzzy time series forecasting method based on hesitant fuzzy sets
  publication-title: Expert Systems with Applications
– volume: 235
  start-page: 786
  year: 2019
  end-page: 801
  ident: b0115
  article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting
  publication-title: Applied Energy
– volume: 123
  start-page: 387
  year: 2001
  end-page: 394
  ident: b0100
  article-title: Effective lengths of intervals to improve forecasting in fuzzy time series
  publication-title: Fuzzy Sets and Systems
– volume: 260
  start-page: 114259
  year: 2020
  ident: b0150
  article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
  publication-title: Applied Energy
– volume: 7
  start-page: 178063
  year: 2019
  end-page: 178081
  ident: b0020
  article-title: Wind speed forecasting system based on the variational mode decomposition strategy and immune selection multi-objective dragonfly optimization algorithm
  publication-title: IEEE Access
– volume: 107
  start-page: 340
  year: 2017
  end-page: 351
  ident: b0050
  article-title: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation
  publication-title: Renewable Energy
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0170
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 146
  start-page: 149
  year: 2020
  end-page: 165
  ident: b0260
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renewable Energy
– volume: 76
  start-page: 637
  year: 2015
  end-page: 647
  ident: b0205
  article-title: Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA
  publication-title: Renewable Energy
– volume: 74
  start-page: 61
  year: 2015
  end-page: 68
  ident: b0025
  article-title: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression
  publication-title: Knowledge-Based Systems
– volume: 92
  start-page: 106294
  year: 2020
  ident: b0055
  article-title: A new combined model based on multi-objective salp swarm optimization for wind speed forecasting
  publication-title: Applied Soft Computing
– volume: 4
  start-page: 1206
  year: 2016
  end-page: 1216
  ident: b0165
  article-title: A novel short-term wind speed prediction based on MFEC
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– volume: 163
  start-page: 384
  year: 2018
  end-page: 406
  ident: b0255
  article-title: Correlation aware multi-step ahead wind speed forecasting with heteroscedastic multi-kernel learning
  publication-title: Energy Conversion and Management
– volume: 2009
  start-page: 1378
  year: 2009
  end-page: 1382
  ident: b0230
  article-title: On hesitant fuzzy sets and decision
  publication-title: IEEE International Conference on Fuzzy Systems
– volume: 222
  start-page: 942
  year: 2019
  end-page: 959
  ident: b0295
  article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China
  publication-title: Journal of Cleaner Production
– volume: 47
  start-page: 90
  year: 2018
  end-page: 104
  ident: b0250
  article-title: Oil and the short-term predictability of stock return volatility
  publication-title: Journal of Empirical Finance
– volume: 208
  start-page: 845
  year: 2017
  end-page: 866
  ident: b0095
  article-title: Research and application of a combined model based on frequent pattern growth algorithm and multi-objective optimization for solar radiation forecasting
  publication-title: Applied Energy
– volume: 54
  start-page: 269
  year: 1993
  end-page: 277
  ident: b0215
  article-title: Fuzzy time series and its models
  publication-title: Fuzzy Sets and Systems
– volume: 196
  start-page: 779
  year: 2019
  end-page: 792
  ident: b0180
  article-title: Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network
  publication-title: Energy Conversion and Management
– volume: 5
  start-page: 501
  year: 2014
  end-page: 510
  ident: b0120
  article-title: Short-term wind power ensemble prediction based on Gaussian processes and neural networks
  publication-title: IEEE Transactions on Smart Grid
– volume: 8
  start-page: 33039
  year: 2020
  end-page: 33059
  ident: b0085
  article-title: A Combined Strategy for Wind Speed Forecasting Using Data Preprocessing and Weight Coefficients Optimization Calculation
  publication-title: IEEE Access
– volume: 80
  start-page: 93
  year: 2019
  end-page: 106
  ident: b0070
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Applied Soft Computing
– volume: 38
  start-page: 100601
  year: 2020
  ident: b0105
  article-title: Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN
  publication-title: Sustainable Energy Technologies and Assessments
– volume: 153
  start-page: 1330
  year: 2020
  end-page: 1345
  ident: b0195
  article-title: Multiple scenarios multi-objective salp swarm optimization for sizing of standalone photovoltaic system
  publication-title: Renewable Energy
– volume: 76
  start-page: 526
  year: 2014
  end-page: 541
  ident: b0245
  article-title: A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China
  publication-title: Energy
– volume: 37
  start-page: 100582
  year: 2020
  ident: b0270
  article-title: A distributed computing framework for wind speed big data forecasting on Apache Spark
  publication-title: Sustainable Energy Technologies and Assessments
– volume: 113
  start-page: 690
  year: 2014
  end-page: 705
  ident: b0040
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Applied Energy
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: b0075
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Applied Energy
– volume: 116
  start-page: 669
  year: 2018
  end-page: 684
  ident: b0130
  article-title: Research and application of a combined model based on variable weight for short term wind speed forecasting
  publication-title: Renewable Energy
– volume: 27
  start-page: 370
  year: 2018
  end-page: 385
  ident: b0210
  article-title: A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches
  publication-title: Journal of Computational Science
– volume: 92
  start-page: 106294
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0055
  article-title: A new combined model based on multi-objective salp swarm optimization for wind speed forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106294
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2020.114364_b0170
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 190
  start-page: 115615
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0300
  article-title: An adaptive hybrid model for short term wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.132
– volume: 260
  start-page: 114259
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0150
  article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.114259
– volume: 62
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.eswa.2020.114364_b0220
  article-title: Forecasting enrollments with fuzzy time series — part II
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(94)90067-1
– volume: 222
  start-page: 942
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0295
  article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.03.036
– volume: 5
  start-page: 501
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2020.114364_b0120
  article-title: Short-term wind power ensemble prediction based on Gaussian processes and neural networks
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2013.2280649
– volume: 231
  start-page: 301
  issue: March
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0225
  article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.09.012
– volume: 47
  start-page: 90
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0250
  article-title: Oil and the short-term predictability of stock return volatility
  publication-title: Journal of Empirical Finance
  doi: 10.1016/j.jempfin.2018.03.002
– volume: 113
  start-page: 690
  year: 2014
  ident: 10.1016/j.eswa.2020.114364_b0040
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2013.08.025
– volume: 93
  start-page: 106350
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0060
  article-title: Point and interval forecasting for wind speed based on linear component extraction
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106350
– volume: 146
  start-page: 149
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0260
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.04.157
– volume: 208
  start-page: 845
  issue: August
  year: 2017
  ident: 10.1016/j.eswa.2020.114364_b0095
  article-title: Research and application of a combined model based on frequent pattern growth algorithm and multi-objective optimization for solar radiation forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.09.063
– volume: 197
  start-page: 183
  year: 2017
  ident: 10.1016/j.eswa.2020.114364_b0310
  article-title: Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.04.017
– volume: 165
  start-page: 681
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0035
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.03.098
– volume: 87
  start-page: 105972
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0290
  article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105972
– volume: 199
  start-page: 111975
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0135
  article-title: A novel two-stage deep learning wind speed forecasting method with adaptive multiple error corrections and bivariate Dirichlet process mixture model
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.111975
– volume: 2009
  start-page: 1378
  year: 2009
  ident: 10.1016/j.eswa.2020.114364_b0230
  article-title: On hesitant fuzzy sets and decision
  publication-title: IEEE International Conference on Fuzzy Systems
– volume: 64
  start-page: 557
  year: 2016
  ident: 10.1016/j.eswa.2020.114364_b0010
  article-title: Fuzzy time series forecasting method based on hesitant fuzzy sets
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.07.044
– volume: 11
  start-page: 68
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2020.114364_b0315
  article-title: LSTM network: A deep learning approach for short-term traffic forecast
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2016.0208
– volume: 107
  start-page: 340
  year: 2017
  ident: 10.1016/j.eswa.2020.114364_b0050
  article-title: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.02.014
– volume: 76
  start-page: 526
  year: 2014
  ident: 10.1016/j.eswa.2020.114364_b0245
  article-title: A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.064
– volume: 52
  start-page: 395
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2020.114364_b0265
  article-title: Hesitant fuzzy information aggregation in decision making
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2010.09.002
– volume: 4
  start-page: 655
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0015
  article-title: Hesitant fuzzy set based computational method for financial time series forecasting
  publication-title: Granular Computing
  doi: 10.1007/s41066-018-00144-4
– volume: 102
  start-page: 241
  year: 2017
  ident: 10.1016/j.eswa.2020.114364_b0065
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.10.030
– volume: 54
  start-page: 269
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2020.114364_b0215
  article-title: Fuzzy time series and its models
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(93)90372-O
– volume: 11
  start-page: 49
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2020.114364_b0280
  article-title: Quantifier guided aggregation using OWA operators
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z
– volume: 71
  start-page: 783
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0240
  article-title: Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.030
– volume: 81
  start-page: 311
  issue: 3
  year: 1996
  ident: 10.1016/j.eswa.2020.114364_b0045
  article-title: Forecasting enrollments based on fuzzy time series
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(95)00220-0
– volume: 74
  start-page: 61
  year: 2015
  ident: 10.1016/j.eswa.2020.114364_b0025
  article-title: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.11.003
– volume: 255
  start-page: 109855
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0235
  article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2019.109855
– volume: 136
  start-page: 758
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0005
  article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.01.031
– volume: 163
  start-page: 384
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0255
  article-title: Correlation aware multi-step ahead wind speed forecasting with heteroscedastic multi-kernel learning
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.02.034
– volume: 76
  start-page: 717
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0090
  article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2019.07.001
– volume: 33
  start-page: 3276
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0285
  article-title: Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2017.2787667
– volume: 153
  start-page: 1330
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0195
  article-title: Multiple scenarios multi-objective salp swarm optimization for sizing of standalone photovoltaic system
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.02.016
– volume: 277
  start-page: 115561
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0305
  article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2020.115561
– volume: 7
  start-page: 178063
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0020
  article-title: Wind speed forecasting system based on the variational mode decomposition strategy and immune selection multi-objective dragonfly optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957062
– volume: 123
  start-page: 387
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2020.114364_b0100
  article-title: Effective lengths of intervals to improve forecasting in fuzzy time series
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(00)00057-9
– volume: 38
  start-page: 100601
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0105
  article-title: Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2019.100601
– ident: 10.1016/j.eswa.2020.114364_b0030
– volume: 4
  start-page: 1206
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2020.114364_b0165
  article-title: A novel short-term wind speed prediction based on MFEC
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
  doi: 10.1109/JESTPE.2016.2590834
– volume: 27
  start-page: 180
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0175
  article-title: Statistical approach for improved wind speed forecasting for wind power production
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2018.04.010
– volume: 210
  start-page: 559
  issue: 1181
  year: 1980
  ident: 10.1016/j.eswa.2020.114364_b0190
  article-title: Communication between individuals in salp chains. II. Physiology
  publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences
– volume: 37
  start-page: 100582
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0270
  article-title: A distributed computing framework for wind speed big data forecasting on Apache Spark
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2019.100582
– volume: 27
  start-page: 370
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0210
  article-title: A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2018.05.008
– volume: 88
  start-page: 1405
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2020.114364_b0075
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 121
  start-page: 106056
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0140
  article-title: Short-term wind speed forecasting based on the Jaya-SVM model
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2020.106056
– volume: 48
  start-page: 77
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2020.114364_b0145
  article-title: Orness and parameterized RIM quantifier aggregation with OWA operators: A summary
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2007.05.006
– volume: 259
  start-page: 114137
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0155
  article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.114137
– volume: 207
  start-page: 112524
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0185
  article-title: A novel deep learning ensemble model with data denoising for short-term wind speed forecasting
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.112524
– volume: 18
  start-page: 183
  issue: 1
  year: 1988
  ident: 10.1016/j.eswa.2020.114364_b0275
  article-title: On ordered weighted averaging aggregation operators in multicriteria decisionmaking
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.87068
– volume: 80
  start-page: 93
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0070
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.03.035
– volume: 8
  start-page: 33039
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0085
  article-title: A Combined Strategy for Wind Speed Forecasting Using Data Preprocessing and Weight Coefficients Optimization Calculation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973746
– volume: 116
  start-page: 669
  year: 2018
  ident: 10.1016/j.eswa.2020.114364_b0130
  article-title: Research and application of a combined model based on variable weight for short term wind speed forecasting
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.09.089
– volume: 174
  start-page: 1219
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0125
  article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.194
– volume: 213
  start-page: 112869
  year: 2020
  ident: 10.1016/j.eswa.2020.114364_b0200
  article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.112869
– volume: 73
  start-page: 625
  year: 2015
  ident: 10.1016/j.eswa.2020.114364_b0080
  article-title: Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2015.04.019
– volume: 82
  start-page: 105587
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0110
  article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105587
– volume: 235
  start-page: 786
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0115
  article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.11.012
– volume: 196
  start-page: 779
  year: 2019
  ident: 10.1016/j.eswa.2020.114364_b0180
  article-title: Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.06.041
– volume: 95
  start-page: 468
  year: 2017
  ident: 10.1016/j.eswa.2020.114364_b0160
  article-title: Time-frequency representation based on robust local mean decomposition for multicomponent AM-FM signal analysis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.03.035
– volume: 76
  start-page: 637
  year: 2015
  ident: 10.1016/j.eswa.2020.114364_b0205
  article-title: Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.11.084
SSID ssj0017007
Score 2.5179014
Snippet •A novel hesitant fuzzy wind speed forecasting system is proposed for the first time.•Multi-fuzzification methods are proposed to deal with the non-determinism...
Owing to the nondeterministic nature of wind speed, the conventional fuzzy time series forecasting model has difficulty in establishing a common membership...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114364
SubjectTerms Algorithms
Artificial intelligence
Decomposition
Feature extraction
Forecasting
Fuzzy sets
Fuzzy time series forecasting
Hesitant fuzzy sets
Intervals
Mathematical models
Model accuracy
Multifuzzification methods
Multiobjective optimization algorithm
Multiple objective analysis
Optimization
Optimization algorithms
Performance evaluation
Time series
Wind speed
Title A hesitant fuzzy wind speed forecasting system with novel defuzzification method and multi-objective optimization algorithm
URI https://dx.doi.org/10.1016/j.eswa.2020.114364
https://www.proquest.com/docview/2492315895
Volume 168
WOSCitedRecordID wos000640552200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKlwMXvhELC_KBW5QVceI4OVZoEXBYIbFI5RTZibO0apOqX7tb_sT-5PV47LQUsQIkLlEV2XHV9zrjjN_MEPJGlVzZU_80zVSYaKZDVcc6zA0XuMwhvTGxzSbE6Wk2HOafe71rnwuznoimyS4v89l_hdrcM2BD6uxfwN091Nwwnw3o5mpgN9c_An5gNn-LETQHDurVZnMVXIwgNj4zbgo0hbqUCyt1xhrOGIht2rWeBJWGCaAdQlZgd2l7vGB1h2Grxmgfg9ZYmqlL4Qzk5Lydm8dMfwrzQw3lpVvF59DtnJZvI_lOE2x4uvnerjqFELbTbpvz6ajZH_zNO1wYuLID5ejKEd3FMFgExzGYxYmBNZ9cs1UyYYRShEmETXyONdrnTMRhKrCpYmfAsTHPL84A4xLjY724gApTzBZGjtNk6_o6QeIXWAzWYlAqNUnEHXLABM-zPjkYfDwZfupOpsRbTMH3X84lYqFmcH-l32129ty-3cucPST33UsIHSB5HpGebh6TB77BB3X2_gn5MaCeS9RyiQKXqOUS3eESRZQpgEwtl-gelyhyiRou0T0u0V0u0Y5LT8nX9ydn7z6ErltHWMYsW4ZVlcQyrlWs41wqFZWxTHWk47ROeVIrVUa1qI0ZEJwJyOfWUVRJXYNqiSktZfyM9Ju20c8JlcYPyYxVaQlv64ornoqKM11JwSrN80MS-Z-1KF0pe-ioMim8ZnFcABQFQFEgFIck6ObMsJDLraO5R6twW1HcYhaGXLfOO_LQFs4mLApmiyDyLOcv_vGxL8m97d_miPSX85V-Re6W6-VoMX_tKHoDjZfBQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hesitant+fuzzy+wind+speed+forecasting+system+with+novel+defuzzification+method+and+multi-objective+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Jianzhou&rft.au=Li%2C+Hongmin&rft.au=Wang%2C+Ying&rft.au=Lu%2C+Haiyan&rft.date=2021-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=168&rft_id=info:doi/10.1016%2Fj.eswa.2020.114364&rft.externalDocID=S0957417420310447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon