Multiview Clustering: A Scalable and Parameter-Free Bipartite Graph Fusion Method

Multiview clustering partitions data into different groups according to their heterogeneous features. Most existing methods degenerate the applicability of models due to their intractable hyper-parameters triggered by various regularization terms. Moreover, traditional spectral based methods always...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 1; pp. 330 - 344
Main Authors: Li, Xuelong, Zhang, Han, Wang, Rong, Nie, Feiping
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiview clustering partitions data into different groups according to their heterogeneous features. Most existing methods degenerate the applicability of models due to their intractable hyper-parameters triggered by various regularization terms. Moreover, traditional spectral based methods always encounter the expensive time overheads and fail in exploring the explicit clusters from graphs. In this paper, we present a scalable and parameter-free graph fusion framework for multiview clustering, seeking for a joint graph compatible across multiple views in a self-supervised weighting manner. Our formulation coalesces multiple view-wise graphs straightforward and learns the weights as well as the joint graph interactively, which could actively release the model from any weight-related hyper-parameters. Meanwhile, we manipulate the joint graph by a connectivity constraint such that the connected components indicate clusters directly. The designed algorithm is initialization-independent and time-economical which obtains the stable performance and scales well with the data size. Substantial experiments on toy data as well as real datasets are conducted that verify the superiority of the proposed method compared to the state-of-the-arts over the clustering performance and time expenditure.
AbstractList Multiview clustering partitions data into different groups according to their heterogeneous features. Most existing methods degenerate the applicability of models due to their intractable hyper-parameters triggered by various regularization terms. Moreover, traditional spectral based methods always encounter the expensive time overheads and fail in exploring the explicit clusters from graphs. In this paper, we present a scalable and parameter-free graph fusion framework for multiview clustering, seeking for a joint graph compatible across multiple views in a self-supervised weighting manner. Our formulation coalesces multiple view-wise graphs straightforward and learns the weights as well as the joint graph interactively, which could actively release the model from any weight-related hyper-parameters. Meanwhile, we manipulate the joint graph by a connectivity constraint such that the connected components indicate clusters directly. The designed algorithm is initialization-independent and time-economical which obtains the stable performance and scales well with the data size. Substantial experiments on toy data as well as real datasets are conducted that verify the superiority of the proposed method compared to the state-of-the-arts over the clustering performance and time expenditure.Multiview clustering partitions data into different groups according to their heterogeneous features. Most existing methods degenerate the applicability of models due to their intractable hyper-parameters triggered by various regularization terms. Moreover, traditional spectral based methods always encounter the expensive time overheads and fail in exploring the explicit clusters from graphs. In this paper, we present a scalable and parameter-free graph fusion framework for multiview clustering, seeking for a joint graph compatible across multiple views in a self-supervised weighting manner. Our formulation coalesces multiple view-wise graphs straightforward and learns the weights as well as the joint graph interactively, which could actively release the model from any weight-related hyper-parameters. Meanwhile, we manipulate the joint graph by a connectivity constraint such that the connected components indicate clusters directly. The designed algorithm is initialization-independent and time-economical which obtains the stable performance and scales well with the data size. Substantial experiments on toy data as well as real datasets are conducted that verify the superiority of the proposed method compared to the state-of-the-arts over the clustering performance and time expenditure.
Multiview clustering partitions data into different groups according to their heterogeneous features. Most existing methods degenerate the applicability of models due to their intractable hyper-parameters triggered by various regularization terms. Moreover, traditional spectral based methods always encounter the expensive time overheads and fail in exploring the explicit clusters from graphs. In this paper, we present a scalable and parameter-free graph fusion framework for multiview clustering, seeking for a joint graph compatible across multiple views in a self-supervised weighting manner. Our formulation coalesces multiple view-wise graphs straightforward and learns the weights as well as the joint graph interactively, which could actively release the model from any weight-related hyper-parameters. Meanwhile, we manipulate the joint graph by a connectivity constraint such that the connected components indicate clusters directly. The designed algorithm is initialization-independent and time-economical which obtains the stable performance and scales well with the data size. Substantial experiments on toy data as well as real datasets are conducted that verify the superiority of the proposed method compared to the state-of-the-arts over the clustering performance and time expenditure.
Author Zhang, Han
Wang, Rong
Li, Xuelong
Nie, Feiping
Author_xml – sequence: 1
  givenname: Xuelong
  orcidid: 0000-0003-2924-946X
  surname: Li
  fullname: Li, Xuelong
  email: xuelong_li@nwpu.edu.cn
  organization: School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
– sequence: 2
  givenname: Han
  orcidid: 0000-0001-7750-0028
  surname: Zhang
  fullname: Zhang, Han
  email: zhanghan0805@mail.nwpu.edu.cn
  organization: School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
– sequence: 3
  givenname: Rong
  orcidid: 0000-0001-9240-6726
  surname: Wang
  fullname: Wang, Rong
  email: wangrong@nwpu.edu.cn
  organization: School of Cybersecurity and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
– sequence: 4
  givenname: Feiping
  orcidid: 0000-0002-0871-6519
  surname: Nie
  fullname: Nie, Feiping
  email: feipingnie@gmail.com
  organization: School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
BookMark eNp9kE1v1DAQhi3Uim4LfwAukbhwydYef8Thtl2xpVJXbUU5W5NkQl1lk8V2QPx7XLbi0AOnOcz7zLx6TtnROI3E2DvBl0Lw-vz-drW9WgIHvpRcCKHsK7YAYXhZQw1HbMGFgdJasCfsNMZHzoXSXL5mJxIqza3kC3a3nYfkf3r6VayHOSYKfvz-qVgVX1scsBmowLErbjHgjvKy3ASi4sLvMSSfqLgMuH8oNnP001hsKT1M3Rt23OMQ6e3zPGPfNp_v11_K65vLq_Xqumwl2FR2FW9aXaEyqgKV2_dto2VnkAx1YGWrJTWgsO97DSYvlKEa0Yi61xqhkWfs4-HuPkw_ZorJ7XxsaRhwpGmODpTkxihQJkc_vIg-TnMYczsHhle20pWGnIJDqg1TjIF6tw9-h-G3E9w9CXd_hbsn4e5ZeIbsC6j1CVPWkQL64f_o-wPqiejfr1rkwlbJP75mjP4
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TGRS_2025_3540269
crossref_primary_10_1109_TIP_2025_3593057
crossref_primary_10_1016_j_patcog_2024_110892
crossref_primary_10_1109_TCSVT_2024_3393148
crossref_primary_10_1007_s13042_021_01432_3
crossref_primary_10_1109_TNNLS_2024_3473618
crossref_primary_10_1109_TKDE_2023_3268215
crossref_primary_10_1016_j_neucom_2024_128266
crossref_primary_10_1016_j_neucom_2025_130615
crossref_primary_10_1109_TETCI_2024_3502459
crossref_primary_10_1109_TGRS_2022_3183096
crossref_primary_10_1109_TGRS_2025_3538632
crossref_primary_10_1016_j_eswa_2025_127943
crossref_primary_10_1109_TPAMI_2023_3298629
crossref_primary_10_1016_j_engappai_2023_106379
crossref_primary_10_1109_TCAD_2023_3345251
crossref_primary_10_1007_s11390_025_3739_2
crossref_primary_10_1016_j_patcog_2024_110308
crossref_primary_10_1109_TKDE_2025_3583718
crossref_primary_10_1109_TPAMI_2025_3580669
crossref_primary_10_1109_TKDE_2023_3333522
crossref_primary_10_1016_j_neucom_2024_128037
crossref_primary_10_1109_TPAMI_2022_3203157
crossref_primary_10_1016_j_ins_2024_120374
crossref_primary_10_1109_TCSVT_2022_3143848
crossref_primary_10_1109_TPAMI_2022_3187976
crossref_primary_10_1109_TCSVT_2023_3312979
crossref_primary_10_3724_SP_J_1089_2022_19522
crossref_primary_10_1109_TKDE_2024_3392209
crossref_primary_10_1109_TCYB_2024_3451292
crossref_primary_10_1109_TNNLS_2025_3552969
crossref_primary_10_1016_j_neucom_2024_127513
crossref_primary_10_1109_TBDATA_2023_3325045
crossref_primary_10_1109_TCYB_2023_3321843
crossref_primary_10_1016_j_landusepol_2025_107474
crossref_primary_10_1109_TPAMI_2022_3179556
crossref_primary_10_1109_TCYB_2025_3535722
crossref_primary_10_1109_TNNLS_2022_3219131
crossref_primary_10_1016_j_eswa_2025_126878
crossref_primary_10_1109_TIP_2022_3141612
crossref_primary_10_1016_j_dsp_2025_105443
crossref_primary_10_1016_j_neucom_2023_127102
crossref_primary_10_1016_j_neucom_2024_127523
crossref_primary_10_3390_e26110992
crossref_primary_10_1109_TNNLS_2023_3256066
crossref_primary_10_1109_TCSS_2021_3109151
crossref_primary_10_1016_j_dsp_2022_103847
crossref_primary_10_1109_TFUZZ_2024_3421576
crossref_primary_10_1016_j_patcog_2022_108809
crossref_primary_10_1109_LSP_2025_3560529
crossref_primary_10_1109_TNNLS_2022_3184970
crossref_primary_10_1109_TPAMI_2022_3217137
crossref_primary_10_1109_TETCI_2024_3375342
crossref_primary_10_1109_TNNLS_2025_3558613
crossref_primary_10_1109_TFUZZ_2025_3580408
crossref_primary_10_1002_cpe_70134
crossref_primary_10_3390_electronics14040817
crossref_primary_10_1016_j_inffus_2024_102393
crossref_primary_10_1016_j_ins_2024_120281
crossref_primary_10_1016_j_asoc_2024_112538
crossref_primary_10_1109_TPAMI_2022_3202158
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1109_TKDE_2025_3569681
crossref_primary_10_1016_j_patcog_2025_112195
crossref_primary_10_1109_JSTARS_2025_3538174
crossref_primary_10_1109_TNNLS_2022_3201964
crossref_primary_10_1016_j_patcog_2024_110860
crossref_primary_10_1016_j_neucom_2024_128627
crossref_primary_10_1016_j_patrec_2025_07_016
crossref_primary_10_1007_s11263_024_02323_0
crossref_primary_10_1145_3735644
crossref_primary_10_1109_TNNLS_2025_3525766
crossref_primary_10_1109_TNNLS_2024_3489585
crossref_primary_10_1109_TETCI_2023_3314551
crossref_primary_10_1109_TNSE_2022_3217185
crossref_primary_10_1007_s12559_023_10146_3
crossref_primary_10_1109_TNNLS_2025_3545435
crossref_primary_10_1016_j_ipm_2023_103603
crossref_primary_10_1016_j_knosys_2023_111020
crossref_primary_10_1109_TAI_2021_3052425
crossref_primary_10_1016_j_inffus_2023_102097
crossref_primary_10_1049_ipr2_12674
crossref_primary_10_1109_TIP_2023_3340609
crossref_primary_10_1016_j_eswa_2025_129019
crossref_primary_10_1109_TNNLS_2023_3261460
crossref_primary_10_1016_j_knosys_2024_111768
crossref_primary_10_1109_TIP_2025_3542602
crossref_primary_10_1016_j_patcog_2024_110716
crossref_primary_10_1007_s00371_022_02717_6
crossref_primary_10_1109_TCYB_2022_3191121
crossref_primary_10_1109_TMM_2024_3521776
crossref_primary_10_1109_TPAMI_2025_3566169
crossref_primary_10_1109_TNNLS_2023_3260258
crossref_primary_10_1109_TNNLS_2022_3189763
crossref_primary_10_1109_TPAMI_2024_3446537
crossref_primary_10_1145_3653305
crossref_primary_10_1016_j_patcog_2022_108957
crossref_primary_10_1109_TIP_2024_3444320
crossref_primary_10_1109_TKDE_2022_3198800
crossref_primary_10_1109_TNNLS_2022_3173742
crossref_primary_10_1016_j_ins_2022_07_089
crossref_primary_10_1016_j_knosys_2025_113119
crossref_primary_10_1145_3534931
crossref_primary_10_1109_TIFS_2025_3539100
crossref_primary_10_1016_j_dsp_2024_104815
crossref_primary_10_1016_j_neucom_2025_130233
crossref_primary_10_1109_TNNLS_2023_3332335
crossref_primary_10_1109_TMM_2024_3521789
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1109_TETCI_2024_3406704
crossref_primary_10_1109_TPAMI_2023_3318603
crossref_primary_10_1109_TCSVT_2021_3127007
crossref_primary_10_1109_TCSVT_2023_3311174
crossref_primary_10_1007_s13042_024_02270_9
crossref_primary_10_1109_TCSVT_2024_3492814
crossref_primary_10_1016_j_neunet_2025_108003
crossref_primary_10_1109_TCYB_2022_3212480
crossref_primary_10_1109_TMM_2025_3535402
crossref_primary_10_1016_j_inffus_2024_102630
crossref_primary_10_1109_TIP_2023_3310339
crossref_primary_10_1109_TPAMI_2023_3316671
crossref_primary_10_1109_TMM_2023_3260649
crossref_primary_10_1109_TBDATA_2022_3232761
crossref_primary_10_1016_j_patcog_2022_109264
crossref_primary_10_1109_TKDE_2024_3440352
crossref_primary_10_1016_j_neucom_2024_127579
crossref_primary_10_1016_j_neucom_2023_126887
crossref_primary_10_1109_TNNLS_2025_3545465
crossref_primary_10_1109_TNNLS_2023_3279133
crossref_primary_10_1016_j_neucom_2022_06_009
crossref_primary_10_1145_3537900
crossref_primary_10_1109_TCSVT_2023_3302326
crossref_primary_10_1016_j_patcog_2024_110389
crossref_primary_10_1109_TCE_2023_3319018
crossref_primary_10_1109_TETCI_2024_3369316
crossref_primary_10_1016_j_patcog_2025_111977
crossref_primary_10_1109_TCSS_2024_3386621
crossref_primary_10_1109_TPAMI_2022_3231470
crossref_primary_10_1016_j_eswa_2025_128193
crossref_primary_10_1016_j_inffus_2023_03_002
crossref_primary_10_1109_TAI_2024_3373720
crossref_primary_10_1016_j_neunet_2024_107111
crossref_primary_10_1111_tgis_70073
crossref_primary_10_1016_j_patcog_2023_110082
crossref_primary_10_1109_TCSVT_2025_3533301
crossref_primary_10_1109_TIP_2022_3171411
crossref_primary_10_1007_s10462_024_10785_4
crossref_primary_10_1109_TKDE_2025_3579388
crossref_primary_10_1109_TNNLS_2022_3201699
crossref_primary_10_1109_TMM_2023_3323884
crossref_primary_10_1109_TKDE_2023_3312794
crossref_primary_10_1109_TBDATA_2024_3433525
crossref_primary_10_1007_s11432_022_3628_y
crossref_primary_10_1016_j_ins_2023_118937
crossref_primary_10_1016_j_neunet_2023_06_038
crossref_primary_10_1109_TMM_2024_3360689
crossref_primary_10_1016_j_ins_2024_121396
crossref_primary_10_1109_TNNLS_2024_3502455
crossref_primary_10_1016_j_neunet_2025_107409
crossref_primary_10_1007_s10489_024_05616_6
crossref_primary_10_1016_j_neucom_2022_05_090
crossref_primary_10_1109_TKDE_2022_3222411
crossref_primary_10_1016_j_patcog_2025_111880
crossref_primary_10_1016_j_patcog_2024_110592
crossref_primary_10_1007_s11042_023_15018_4
crossref_primary_10_1016_j_knosys_2022_110162
crossref_primary_10_1109_TCSVT_2024_3492045
crossref_primary_10_1016_j_patcog_2024_110366
crossref_primary_10_1109_TMM_2023_3340095
crossref_primary_10_1109_TKDE_2024_3487907
crossref_primary_10_1109_TNNLS_2024_3456593
crossref_primary_10_1109_TMM_2024_3521743
crossref_primary_10_1016_j_knosys_2025_114356
crossref_primary_10_1016_j_knosys_2025_113942
crossref_primary_10_1038_s41598_022_17585_2
crossref_primary_10_1109_TKDE_2022_3231929
crossref_primary_10_1109_TKDE_2025_3538852
crossref_primary_10_1016_j_eswa_2025_128413
crossref_primary_10_1109_TCSVT_2022_3200451
crossref_primary_10_1007_s00530_025_01794_6
crossref_primary_10_1109_TETCI_2024_3378603
crossref_primary_10_1109_TCAD_2025_3526060
crossref_primary_10_1109_TKDE_2022_3178145
crossref_primary_10_1109_TNNLS_2024_3373532
crossref_primary_10_1109_TNNLS_2024_3388192
crossref_primary_10_1016_j_patcog_2023_109860
crossref_primary_10_1109_ACCESS_2023_3344462
crossref_primary_10_1109_TCYB_2025_3557917
crossref_primary_10_1016_j_neucom_2023_126320
crossref_primary_10_1016_j_neunet_2025_107669
crossref_primary_10_1109_TAI_2023_3293479
crossref_primary_10_1109_TMM_2020_3019683
crossref_primary_10_1109_TNNLS_2022_3153310
crossref_primary_10_1109_TPAMI_2022_3198411
crossref_primary_10_1109_TPAMI_2024_3398220
crossref_primary_10_1109_TMM_2022_3193855
crossref_primary_10_1145_3568684
crossref_primary_10_1016_j_eswa_2025_126488
crossref_primary_10_1016_j_neunet_2025_107424
crossref_primary_10_1109_TNNLS_2023_3236686
crossref_primary_10_3390_rs14071743
crossref_primary_10_1109_TIP_2021_3131941
crossref_primary_10_1109_TNSE_2024_3389657
crossref_primary_10_1016_j_patcog_2025_112229
crossref_primary_10_1016_j_patcog_2025_111811
crossref_primary_10_1109_TMM_2023_3321499
crossref_primary_10_1007_s10489_025_06476_4
crossref_primary_10_1109_TNNLS_2022_3201562
crossref_primary_10_1016_j_patcog_2025_111818
crossref_primary_10_1016_j_knosys_2025_113960
crossref_primary_10_1109_TETCI_2023_3256466
crossref_primary_10_1109_TKDE_2024_3487534
crossref_primary_10_1109_LSP_2025_3558161
crossref_primary_10_1016_j_neunet_2025_107779
crossref_primary_10_1016_j_neunet_2025_107652
crossref_primary_10_1016_j_ins_2024_120335
crossref_primary_10_1109_TKDE_2024_3413682
crossref_primary_10_1109_TMM_2023_3248173
crossref_primary_10_1109_TNNLS_2024_3486912
crossref_primary_10_1016_j_patcog_2024_110675
crossref_primary_10_1109_TIP_2024_3459651
crossref_primary_10_1016_j_patcog_2025_111844
crossref_primary_10_1007_s10489_022_04074_2
crossref_primary_10_1109_TFUZZ_2023_3306639
crossref_primary_10_1109_TGRS_2021_3074184
crossref_primary_10_1109_TPAMI_2025_3526790
crossref_primary_10_3390_axioms11120722
crossref_primary_10_1145_3694689
crossref_primary_10_1109_TCYB_2022_3157771
crossref_primary_10_1109_TSP_2024_3385654
crossref_primary_10_1109_TC_2024_3416619
crossref_primary_10_1109_TCYB_2024_3443198
crossref_primary_10_1109_TNSE_2023_3244624
crossref_primary_10_1109_TNNLS_2024_3499996
crossref_primary_10_1016_j_knosys_2024_112106
crossref_primary_10_1016_j_inffus_2024_102405
crossref_primary_10_1007_s00530_022_00985_9
crossref_primary_10_1109_TPAMI_2022_3198638
crossref_primary_10_1007_s10489_022_03551_y
crossref_primary_10_1109_TMM_2023_3234362
crossref_primary_10_1016_j_inffus_2025_103134
crossref_primary_10_1016_j_neunet_2024_106282
crossref_primary_10_1016_j_neunet_2025_107550
crossref_primary_10_1109_TNNLS_2021_3117403
crossref_primary_10_1016_j_patcog_2025_112124
crossref_primary_10_1109_TSIPN_2024_3414134
crossref_primary_10_1109_TKDE_2024_3443534
crossref_primary_10_1109_TIP_2024_3357257
crossref_primary_10_1109_TKDE_2023_3270311
crossref_primary_10_1109_TNNLS_2024_3392484
crossref_primary_10_1016_j_inffus_2023_101947
crossref_primary_10_1109_TNNLS_2022_3213756
crossref_primary_10_1109_TNNLS_2024_3439394
crossref_primary_10_1109_TNNLS_2024_3378194
crossref_primary_10_1109_TCSVT_2024_3382761
crossref_primary_10_1016_j_inffus_2023_101941
crossref_primary_10_1016_j_neunet_2024_106849
crossref_primary_10_1016_j_knosys_2025_114392
crossref_primary_10_1109_ACCESS_2025_3543099
crossref_primary_10_1109_TPAMI_2025_3532688
crossref_primary_10_1109_TAI_2021_3123126
crossref_primary_10_1109_TNNLS_2024_3442435
crossref_primary_10_1109_TBDATA_2022_3227089
Cites_doi 10.1023/a:1017501703105
10.1109/TIP.2018.2877335
10.1109/TKDE.2016.2535367
10.1109/TIP.2017.2665976
10.1109/TPAMI.2018.2847335
10.1109/TPAMI.2018.2877660
10.1016/j.knosys.2019.105102
10.1609/aaai.v29i1.9598
10.1109/TCYB.2017.2751646
10.1109/CVPR.2015.7298657
10.1109/34.868688
10.1109/ICCV.2005.148
10.1109/TNNLS.2017.2777489
10.1016/j.cviu.2005.09.012
10.1016/j.inffus.2019.09.005
10.1016/j.neunet.2019.10.010
10.1145/1646396.1646452
10.1609/aaai.v31i1.10867
10.1109/TIP.2016.2553459
10.1137/1.9781611972832.28
10.1109/ICDM.2004.10095
10.1007/s00500-016-2120-3
10.1016/j.knosys.2018.09.009
10.1109/ICCV.2003.1238361
10.1145/183422.183423
10.1609/aaai.v28i1.8950
10.1109/TKDE.2018.2873378
10.1109/TIP.2017.2754939
10.1109/MSP.2012.2211477
10.1109/TMM.2015.2477058
10.1016/j.neucom.2015.01.017
10.24963/ijcai.2017/357
10.1609/aaai.v34i04.5867
10.5244/c.31.64
10.1109/TCYB.2014.2358564
10.1073/pnas.35.11.652
10.1145/1273496.1273642
10.1016/j.neunet.2017.02.003
10.1002/nav.3800020109
10.1109/TCYB.2018.2887094
10.3390/a10040128
10.1609/aaai.v30i1.10302
10.1109/TIP.2015.2463223
10.1016/j.patrec.2009.09.011
10.1137/0715050
10.1109/TKDE.2019.2903810
10.1109/TNNLS.2017.2786743
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.3011148
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 344
ExternalDocumentID 10_1109_TPAMI_2020_3011148
9146384
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0101902
  funderid: 10.13039/501100012166
– fundername: Inno vation Foundation for Doctor Dissertation of Northwestern Polytechnical University
  grantid: CX201918
– fundername: National Natural Science Foundation of China
  grantid: 61871470; 61761130079; 61751202; 61772427; 61936014
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c328t-d70bc57a464724111fcb53d6ae6ed283c53eb24afff5263d646e9aa619f55a2b3
IEDL.DBID RIE
ISICitedReferencesCount 356
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728561300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 07:34:45 EDT 2025
Mon Jun 30 04:26:53 EDT 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:17:44 EST 2025
Wed Aug 27 05:11:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-d70bc57a464724111fcb53d6ae6ed283c53eb24afff5263d646e9aa619f55a2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0871-6519
0000-0003-2924-946X
0000-0001-9240-6726
0000-0001-7750-0028
PMID 32750830
PQID 2607875752
PQPubID 85458
PageCount 15
ParticipantIDs crossref_primary_10_1109_TPAMI_2020_3011148
proquest_journals_2607875752
proquest_miscellaneous_2430664246
crossref_citationtrail_10_1109_TPAMI_2020_3011148
ieee_primary_9146384
PublicationCentury 2000
PublicationDate 2022-Jan.-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
Liu (ref40)
ref17
ref19
ref18
ref51
ref50
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref31
ref30
ref33
Zelnik-Manor (ref36); 17
ref32
Kumar (ref37)
ref2
ref1
ref39
ref38
Nie (ref22)
Lin (ref47)
ref24
Ng (ref34); 14
ref23
ref26
ref25
ref20
ref21
Kumar (ref16)
ref28
ref27
Bertsekas (ref45) 1982
ref29
Dheeru (ref52) 2017
Lin (ref46) 2009
Strehl (ref57) 2002; 3
Huang (ref60)
References_xml – start-page: 393
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  ident: ref37
  article-title: A co-training approach for multiview spectral clustering
– ident: ref43
  doi: 10.1023/a:1017501703105
– ident: ref25
  doi: 10.1109/TIP.2018.2877335
– ident: ref42
  doi: 10.1109/TKDE.2016.2535367
– ident: ref12
  doi: 10.1109/TIP.2017.2665976
– volume: 17
  start-page: 1601
  volume-title: Proc. 17th Int. Conf. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Self-tuning spectral clustering
– ident: ref30
  doi: 10.1109/TPAMI.2018.2847335
– ident: ref6
  doi: 10.1109/TPAMI.2018.2877660
– ident: ref24
  doi: 10.1016/j.knosys.2019.105102
– volume: 3
  start-page: 583
  year: 2002
  ident: ref57
  article-title: Cluster ensembles – A knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– start-page: 1413
  volume-title: Proc. 24th Int. Conf. Neural Inf. Process. Syst.
  ident: ref16
  article-title: Co-regularized multiview spectral clustering
– ident: ref27
  doi: 10.1609/aaai.v29i1.9598
– ident: ref39
  doi: 10.1109/TCYB.2017.2751646
– ident: ref4
  doi: 10.1109/CVPR.2015.7298657
– ident: ref26
  doi: 10.1109/34.868688
– ident: ref51
  doi: 10.1109/ICCV.2005.148
– ident: ref17
  doi: 10.1109/TNNLS.2017.2777489
– ident: ref53
  doi: 10.1016/j.cviu.2005.09.012
– ident: ref21
  doi: 10.1016/j.inffus.2019.09.005
– ident: ref9
  doi: 10.1016/j.neunet.2019.10.010
– ident: ref55
  doi: 10.1145/1646396.1646452
– volume: 14
  start-page: 849
  volume-title: Proc. 14th Int. Conf. Neural Inf. Process. Syst.
  ident: ref34
  article-title: On spectral clustering: Analysis and an algorithm
– ident: ref13
  doi: 10.1609/aaai.v31i1.10867
– ident: ref19
  doi: 10.1109/TIP.2016.2553459
– start-page: 679
  volume-title: Proc. 27th Int. Conf. Mach. Learn.
  ident: ref40
  article-title: Large graph construction for scalable semi-supervised learning
– volume-title: Constrained Optimization and Lagrange Multiplier Methods
  year: 1982
  ident: ref45
– ident: ref10
  doi: 10.1137/1.9781611972832.28
– ident: ref14
  doi: 10.1109/ICDM.2004.10095
– ident: ref28
  doi: 10.1007/s00500-016-2120-3
– start-page: 1881
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref22
  article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification
– ident: ref32
  doi: 10.1016/j.knosys.2018.09.009
– start-page: 3569
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  ident: ref60
  article-title: A new simplex sparse learning model to measure data similarity for clustering
– ident: ref35
  doi: 10.1109/ICCV.2003.1238361
– ident: ref56
  doi: 10.1145/183422.183423
– ident: ref18
  doi: 10.1609/aaai.v28i1.8950
– ident: ref20
  doi: 10.1109/TKDE.2018.2873378
– ident: ref23
  doi: 10.1109/TIP.2017.2754939
– start-page: 612
  volume-title: Proc. 24th Int. Conf. Neural Inf. Process. Syst.
  ident: ref47
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
– ident: ref54
  doi: 10.1109/MSP.2012.2211477
– ident: ref2
  doi: 10.1109/TMM.2015.2477058
– ident: ref5
  doi: 10.1016/j.neucom.2015.01.017
– ident: ref38
  doi: 10.24963/ijcai.2017/357
– ident: ref8
  doi: 10.1609/aaai.v34i04.5867
– ident: ref1
  doi: 10.5244/c.31.64
– ident: ref41
  doi: 10.1109/TCYB.2014.2358564
– ident: ref44
  doi: 10.1073/pnas.35.11.652
– ident: ref15
  doi: 10.1145/1273496.1273642
– ident: ref11
  doi: 10.1016/j.neunet.2017.02.003
– ident: ref58
  doi: 10.1002/nav.3800020109
– year: 2017
  ident: ref52
  article-title: UCI machine learning repository
– ident: ref31
  doi: 10.1109/TCYB.2018.2887094
– ident: ref48
  doi: 10.3390/a10040128
– year: 2009
  ident: ref46
  article-title: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices
– ident: ref50
  doi: 10.1109/TCYB.2014.2358564
– ident: ref33
  doi: 10.1609/aaai.v30i1.10302
– ident: ref3
  doi: 10.1109/TIP.2015.2463223
– ident: ref49
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref59
  doi: 10.1137/0715050
– ident: ref29
  doi: 10.1109/TKDE.2019.2903810
– ident: ref7
  doi: 10.1109/TNNLS.2017.2786743
SSID ssj0014503
Score 2.720541
Snippet Multiview clustering partitions data into different groups according to their heterogeneous features. Most existing methods degenerate the applicability of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 330
SubjectTerms Algorithms
Bipartite graph
Clustering
Clustering algorithms
Computer science
connectivity constraint
Data models
Electronic mail
graph fusion
Graph theory
Graphs
initialization-independent
Laplace equations
Mathematical models
Multiview clustering
Optical imaging
Parameters
Regularization
scalable and parameter-free
Title Multiview Clustering: A Scalable and Parameter-Free Bipartite Graph Fusion Method
URI https://ieeexplore.ieee.org/document/9146384
https://www.proquest.com/docview/2607875752
https://www.proquest.com/docview/2430664246
Volume 44
WOSCitedRecordID wos000728561300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7a4oM-WG2Vntaygm8am-6v7Pp2Fk99aDmhwr2FzWYWCkeuXC_-_c7s5UJBEXwL2UkIOzPZ-XZ25gN4JxtnEzamiGVsC-0dFt6li8KmJsikK1rWUyabqK6v3WLh53vwYayFQcR8-Aw_8mXO5ber2PNW2bknt1ZO78N-VVXbWq0xY6BNZkGmCIY8nGDErkCm9Oc38-nVd4KCkhAqU6trJulT3Njc8eHnB-tRJlj546-cl5rZ4f995DN4OoSUYrq1geewh90RHO7oGsTgvUfw5EHvwWP4kUtvOTEgLpc9t0ug25_ElOTDkuupROhaMQ98eIsGi9kaUXy-vWNT26D4yo2uxaznzTZxlWmoX8DP2Zeby2_FwK9QRCXdpmirsommCppbyGuamBQbo1ob0GJLYUc0inC3DiklIy0NaIs-BIJcyZggG_USDrpVhycgkm61UdJH6YIu0Tr0ySrdRkcRXKPUBC52s1zHofk4c2As6wxCSl9nJdWspHpQ0gTej8_cbVtv_FP6mHUxSg5qmMDpTpn14J33NWG4ihv5GzmBt-Mw-RUnS0KHq55kNIEpAmfavvr7m1_DY8mlEHk75hQONuse38Cj-Gtze78-IxNduLNsor8BEw_faQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ8MNhAFAYYiTfIlvpX7L11E2UTa1WkIu0tchxbmlSlU9fw93PnptEk0KS9RbETRT5ffJ_P930AX3hldAyVynzu60xaEzJr4jDTsXI8ygKX9ZjEJorp1Fxd2dkOfOtrYUII6fBZOKLLlMuvl76lrbJji24tjHwEj5WUfLip1upzBlIlHWSMYdDHEUhsS2RyezyfjSYXCAY5YlQSV5ck0yeI2tzQ8ec7K1KSWPnnv5wWm_Hewz7zJbzogko22syCV7ATmn3Y2wo2sM5_9-H5HfbBA_iVim8pNcDOFi0RJuDtEzbC_m5BFVXMNTWbOTq-hY3ZeBUCO72-ocm2DuwHUV2zcUvbbWyShKhfw-_x9_nZedYpLGRecLPO6iKvvCqcJBJ5iQMTfaVErV3QocbAwyuByFu6GKPiGhukDtY5BF1RKccr8QZ2m2UT3gKLspZKcOu5cTIP2gQbtZC1NxjDVUIMYLgd5dJ39OOkgrEoEwzJbZmMVJKRys5IA_jaP3OzId-4t_cB2aLv2ZlhAIdbY5adf96WiOIKovJXfACf-2b0LEqXuCYsW-wjEU4hPJP63f_f_Amens8nl-XlxfTne3jGqTAibc4cwu561YYP8MT_WV_frj6mifoXlyPhyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiview+Clustering%3A+A+Scalable+and+Parameter-Free+Bipartite+Graph+Fusion+Method&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Li%2C+Xuelong&rft.au=Zhang%2C+Han&rft.au=Wang%2C+Rong&rft.au=Nie%2C+Feiping&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=44&rft.issue=1&rft.spage=330&rft.epage=344&rft_id=info:doi/10.1109%2FTPAMI.2020.3011148&rft_id=info%3Apmid%2F32750830&rft.externalDocID=9146384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon