Multiview Clustering: A Scalable and Parameter-Free Bipartite Graph Fusion Method

Multiview clustering partitions data into different groups according to their heterogeneous features. Most existing methods degenerate the applicability of models due to their intractable hyper-parameters triggered by various regularization terms. Moreover, traditional spectral based methods always...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 44; číslo 1; s. 330 - 344
Hlavní autoři: Li, Xuelong, Zhang, Han, Wang, Rong, Nie, Feiping
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Multiview clustering partitions data into different groups according to their heterogeneous features. Most existing methods degenerate the applicability of models due to their intractable hyper-parameters triggered by various regularization terms. Moreover, traditional spectral based methods always encounter the expensive time overheads and fail in exploring the explicit clusters from graphs. In this paper, we present a scalable and parameter-free graph fusion framework for multiview clustering, seeking for a joint graph compatible across multiple views in a self-supervised weighting manner. Our formulation coalesces multiple view-wise graphs straightforward and learns the weights as well as the joint graph interactively, which could actively release the model from any weight-related hyper-parameters. Meanwhile, we manipulate the joint graph by a connectivity constraint such that the connected components indicate clusters directly. The designed algorithm is initialization-independent and time-economical which obtains the stable performance and scales well with the data size. Substantial experiments on toy data as well as real datasets are conducted that verify the superiority of the proposed method compared to the state-of-the-arts over the clustering performance and time expenditure.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2020.3011148