Fully Parallel Stochastic Security-Constrained Unit Commitment
The increasing size and complexity of modern power systems and the integration of volatile renewable energy bring great challenges to the existing security-constrained unit commitment (SCUC) solution engines. This paper presents a fully parallel stochastic SCUC approach to obtain an efficient and fa...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on power systems Jg. 31; H. 5; S. 3561 - 3571 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0885-8950, 1558-0679 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The increasing size and complexity of modern power systems and the integration of volatile renewable energy bring great challenges to the existing security-constrained unit commitment (SCUC) solution engines. This paper presents a fully parallel stochastic SCUC approach to obtain an efficient and fast solution for a large-scale power system with wind energy uncertainty. Variables duplication and auxiliary problem principle (APP) techniques are adopted to fully decompose the original stochastic optimization problem into three major solution modules: the unit commitment (UC) module solves multiple single UC problems; the optimal power flow (OPF) module handles multiple hourly DC-OPF problems; and the bridge module builds a connection between the UC and OPF modules. These three modules are conducted for both base case and scenarios, and can be totally solved in a parallel manner. Numerical case studies on a modified IEEE 118-bus system and a practical 1168-bus system demonstrate the effectiveness and efficiency of the proposed approach which will offer the power system a secure and economic operation under various uncertainties. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0885-8950 1558-0679 |
| DOI: | 10.1109/TPWRS.2015.2494590 |