Harmonization Shared Autoencoder Gaussian Process Latent Variable Model With Relaxed Hamming Distance

Multiview learning has shown its superiority in visual classification compared with the single-view-based methods. Especially, due to the powerful representation capacity, the Gaussian process latent variable model (GPLVM)-based multiview approaches have achieved outstanding performances. However, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 32; H. 11; S. 5093 - 5107
Hauptverfasser: Li, Jinxing, Zhang, Bob, Lu, Guangming, Xu, Yong, Wu, Feng, Zhang, David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiview learning has shown its superiority in visual classification compared with the single-view-based methods. Especially, due to the powerful representation capacity, the Gaussian process latent variable model (GPLVM)-based multiview approaches have achieved outstanding performances. However, most of them only follow the assumption that the shared latent variables can be generated from or projected to the multiple observations but fail to exploit the harmonization in the back constraint and adaptively learn a classifier according to these learned variables, which would result in performance degradation. To tackle these two issues, in this article, we propose a novel harmonization shared autoencoder GPLVM with a relaxed Hamming distance (HSAGP-RHD). Particularly, an autoencoder structure with the Gaussian process (GP) prior is first constructed to learn the shared latent variable for multiple views. To enforce the agreement among various views in the encoder, a harmonization constraint is embedded into the model by making consistency for the view-specific similarity. Furthermore, we also propose a novel discriminative prior, which is directly imposed on the latent variable to simultaneously learn the fused features and adaptive classifier in a unit model. In detail, the centroid matrix corresponding to the centroids of different categories is first obtained. A relaxed Hamming distance (RHD)-based measurement is subsequently presented to measure the similarity and dissimilarity between the latent variable and centroids, not only allowing us to get the closed-form solutions but also encouraging the points belonging to the same class to be close, while those belonging to different classes to be far. Due to this novel prior, the category of the out-of-sample is also allowed to be simply assigned in the testing phase. Experimental results conducted on three real-world data sets demonstrate the effectiveness of the proposed method compared with state-of-the-art approaches.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3026876