Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby
•Multi-state decision diagram method for reliability of power systems is proposed.•The method allows warm standby systems with any transition time distributions.•Successful start-up probabilities of warm standby units are considered.•The proposed method enables the automated calculation of system re...
Uložené v:
| Vydané v: | Reliability engineering & system safety Ročník 195; s. 106736 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Barking
Elsevier Ltd
01.03.2020
Elsevier BV |
| Predmet: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | •Multi-state decision diagram method for reliability of power systems is proposed.•The method allows warm standby systems with any transition time distributions.•Successful start-up probabilities of warm standby units are considered.•The proposed method enables the automated calculation of system reliability.•Optimal activation sequence of units is formulated to maximize system reliability.
Warm standby has been widely applied to power generation systems to ensure safe and reliable operation with lower energy consumption and shorter leading time compared with the case of hot standby and cold standby, respectively. Since there is a series of intermediate states between perfect functioning and complete failure for generating units, multi-state characteristics emerge in power generation systems. Considering different parameters of state transition time distributions before and after activation of standby units, as well as generating units with arbitrary state transition time distributions, this entails a need to propose a reliability evaluation technique to handle multi-state power generation systems considering warm standby with arbitrary state transition time distributions. An analytic method based on multi-state decision diagram (MSDD) is proposed in this paper for the reliability analysis of the proposed systems considering successful activation probabilities of warm standby units. The MSDD-based technique is applicable to multi-state power generation systems with arbitrary state transition time distributions for generating units. The proposed method enables the automated calculation of the system reliability and expected surplus performance. Furthermore, the optimum sequence of activating warm standby units that maximizes system reliability is formulated based on the proposed automatic reliability calculation method. Illustrative examples are provided to validate the effectiveness of the proposed technique. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0951-8320 1879-0836 |
| DOI: | 10.1016/j.ress.2019.106736 |