Queue-Aware Transmission Scheduling for Cooperative Wireless Communications
Queue-aware transmission scheduling for cooperative wireless communications with sub-fading-block scheduling to better balance load and capacity in low mobility environments is investigated. The scheduling problem for joint cooperation scheduling and resource allocation is formulated as a constraine...
Uloženo v:
| Vydáno v: | IEEE transactions on communications Ročník 63; číslo 4; s. 1149 - 1161 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Queue-aware transmission scheduling for cooperative wireless communications with sub-fading-block scheduling to better balance load and capacity in low mobility environments is investigated. The scheduling problem for joint cooperation scheduling and resource allocation is formulated as a constrained nonlinear integer optimization problem over an integer convex set based on a source buffer queueing analysis. It is shown that with queue-aware scheduling, the state transition matrix of the source buffer queue has a highly dynamic form. As a result, the objective function of the optimization problem does not have an analytic form in general. The constrained discrete Rosenbrock search algorithm, which is a gradient-free directed discrete search algorithm, is employed to solve the nonlinear integer problem. The output of the directed integer search algorithm is used for queue-aware transmission scheduling for the cooperative system. Numerical results are presented which show that, for cooperative transmission scheduling, the Rosenbrock search based queue-aware algorithm significantly outperforms the equal partitioning, random partitioning, and gradient-based algorithms under quasi-static channel assumptions. Under practical system conditions with unsaturated traffic, the proposed queue-aware scheduling scheme achieves the true optima, and maintains a large stability region for the buffer queue, over a wide range of channel and traffic conditions. It is also shown that when fading channel dynamics are taken into consideration, the performance of the proposed queue-aware scheduling algorithm significantly outperforms fixed relaying and fixed direct transmission channel-aware scheduling strategies. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2015.2396916 |