Linear Vector Physical-Layer Network Coding for MIMO Two-Way Relay Channels: Design and Performance Analysis
In this paper, we propose a new linear vector physical-layer network coding (NC) scheme for spatial multiplexing multiple-input multiple-output (MIMO) two-way relay channel (TWRC) where the channel state information (CSI) is not available at the transmitters. In this scheme, each user transmits M in...
Saved in:
| Published in: | IEEE transactions on communications Vol. 63; no. 7; pp. 2591 - 2604 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we propose a new linear vector physical-layer network coding (NC) scheme for spatial multiplexing multiple-input multiple-output (MIMO) two-way relay channel (TWRC) where the channel state information (CSI) is not available at the transmitters. In this scheme, each user transmits M independent quadrature amplitude modulation signal streams respectively from its M antennas to the relay. Based on the receiver-side CSI, the relay determines a NC generator matrix for linear vector network coding, and reconstructs the associated M linear combinations of all messages. We present an explicit solution for the generator matrix that minimizes the error probability at a high SNR, as well as an efficient algorithm to find the optimized solution. We propose a novel typical error event analysis that exploits a new characterization of the deep fade events for the TWRC. We derive a new closed-form expression for the average error probability of the proposed scheme over a Rayleigh fading MIMO TWRC. Our analysis shows that the proposed scheme achieves the optimal error rate performance at a high SNR. Numerical results show that the proposed scheme significantly outperforms existing schemes, and match well with our analytical results. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2015.2413395 |