Routing Functions for Parameter Space Decomposition to Describe Stability Landscapes of Ecological Models

Changes in environmental or system parameters often drive major biological transitions, including ecosystem collapse, disease outbreaks, and tumor development. Analyzing the stability of steady states in dynamical systems provides critical insight into these transitions. This paper introduces an alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology Jg. 87; H. 12; S. 177
Hauptverfasser: Cummings, Joseph, Dahlin, Kyle J.-M., Gross, Elizabeth, Hauenstein, Jonathan D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Springer Nature B.V 01.12.2025
Schlagworte:
ISSN:0092-8240, 1522-9602, 1522-9602
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Changes in environmental or system parameters often drive major biological transitions, including ecosystem collapse, disease outbreaks, and tumor development. Analyzing the stability of steady states in dynamical systems provides critical insight into these transitions. This paper introduces an algebraic framework for analyzing the stability landscapes of ecological models defined by systems of first-order autonomous ordinary differential equations with polynomial or rational rate functions. Using tools from real algebraic geometry, we characterize parameter regions associated with steady-state feasibility and stability via three key boundaries: singular, stability (Routh-Hurwitz), and coordinate boundaries. With these boundaries in mind, we employ routing functions to compute the connected components of parameter space in which the number and type of stable steady states remain constant, revealing the stability landscape of these ecological models. As case studies, we revisit the classical Levins-Culver competition-colonization model and a recent model of coral-bacteria symbioses. In the latter, our method uncovers complex stability regimes, including regions supporting limit cycles, that are inaccessible via traditional techniques. These results demonstrate the potential of our approach to inform ecological theory and intervention strategies in systems with nonlinear interactions and multiple stable states.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0092-8240
1522-9602
1522-9602
DOI:10.1007/s11538-025-01554-7