Improved-Variable-Forgetting-Factor Recursive Algorithm Based on the Logarithmic Cost for Volterra System Identification

Compared with the least-mean-square algorithm, the least mean pth power algorithm shows a better robustness performance against impulsive noises such as the α-stable noises. However, it still exhibits slow convergence rate and high kernel misadjustment. To overcome this drawback, a novel recursive l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 63; číslo 6; s. 588 - 592
Hlavní autoři: Lu, Lu, Zhao, Haiquan, Chen, Badong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Compared with the least-mean-square algorithm, the least mean pth power algorithm shows a better robustness performance against impulsive noises such as the α-stable noises. However, it still exhibits slow convergence rate and high kernel misadjustment. To overcome this drawback, a novel recursive logarithmic least mean pth (RLLMP) algorithm is proposed for the Volterra system identification under α-stable noise environments. Instead of minimizing the pth power, the new algorithm aims to minimize the pth logarithmic cost, which makes it more robust against impulsive interferences. Furthermore, to enhance tracking performance, an improved variable forgetting factor (IVFF) algorithm (IVFF-RLLMP) is proposed, which is based on the robust estimation of outliers. Simulation results are presented to demonstrate the improved performance of the RLLMP and IVFF-RLLMP.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2016.2531159