A propositionalization method of multi-relational data based on Grammar-Guided Genetic Programming
The propositionalization process tries to find distinctive features of the examples in a database to transform such relational data into a simpler representation. More informative features have a positive impact on the classification capabilities of the learning algorithms. In this work, we propose...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 168; S. 114263 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
15.04.2021
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The propositionalization process tries to find distinctive features of the examples in a database to transform such relational data into a simpler representation. More informative features have a positive impact on the classification capabilities of the learning algorithms. In this work, we propose a new propositionalization method, which generates complex Boolean attributes using Grammar-Guided Genetic Programming (G3P). The generated attributes are compound formulas that combine word items coming from a Bag-of-Words (BoW) representation using Boolean operators. The proposal was assessed against three state-of-the-art simple-instance and multiple-instance propositionalization methods. The experimental results show that the proposed method achieves an improvement in terms of classification accuracy and a considerable reduction in the dimensionality of the resulting datasets.
•Grammar-Guided Genetic Programming is used to generate complex attributes.•Words coming from a Bag-of-Words representation are combined using Boolean operators.•Simple-instance and multiple-instance propositionalization were analyzed.•A considerable reduction in the dimensionality of the resulting datasets is achieved. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0957-4174 1873-6793 |
| DOI: | 10.1016/j.eswa.2020.114263 |