Disjunctive cuts for cross-sections of the second-order cone
In this paper we study general two-term disjunctions on affine cross-sections of the second-order cone. Under some mild assumptions, we derive a closed-form expression for a convex inequality that is valid for such a disjunctive set, and we show that this inequality is sufficient to characterize the...
Uložené v:
| Vydané v: | Operations research letters Ročník 43; číslo 4; s. 432 - 437 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.07.2015
|
| Predmet: | |
| ISSN: | 0167-6377, 1872-7468 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper we study general two-term disjunctions on affine cross-sections of the second-order cone. Under some mild assumptions, we derive a closed-form expression for a convex inequality that is valid for such a disjunctive set, and we show that this inequality is sufficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and paraboloids and a wide class of two-term disjunctions–including split disjunctions–on hyperboloids. Our approach relies on the work of Kılınç-Karzan and Yıldız which considers general two-term disjunctions on the second-order cone. |
|---|---|
| ISSN: | 0167-6377 1872-7468 |
| DOI: | 10.1016/j.orl.2015.06.001 |