Exploring structure-function coupling in alzheimer’s disease: bridging neuroimaging, AI, and policy for future insights

[...]while the study focuses on static SFC metrics, it does not address dynamic network adaptations—such as time-varying functional connectivity or compensatory reorganization—that may influence cognitive resilience. Auto ML technology Just Add Data Bio generated three AD biosignatures using SVM (mi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of nuclear medicine and molecular imaging Ročník 52; číslo 13; s. 5202 - 5203
Hlavní autori: Wang, Xun, Jiang, Yixin, Dong, Yifan, Zhu, Qian, Zhao, Yan, Zhang, Shuo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2025
Springer Nature B.V
Predmet:
ISSN:1619-7070, 1619-7089, 1619-7089
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:[...]while the study focuses on static SFC metrics, it does not address dynamic network adaptations—such as time-varying functional connectivity or compensatory reorganization—that may influence cognitive resilience. Auto ML technology Just Add Data Bio generated three AD biosignatures using SVM (miRNA, AUC 0.975), Random Forests (mRNA, AUC 0.846), and Ridge Logistic Regression (protein, AUC 0.921) on low-sample blood omics data) [5]. [...]federated learning frameworks could harmonize data from multi-center, addressing current limitations in sample size and diversity [6]. GFAP as a potential biomarker for Alzheimer’s disease: A systematic review and Meta-Analysis.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 14
content type line 23
ISSN:1619-7070
1619-7089
1619-7089
DOI:10.1007/s00259-025-07389-7