Adaptive Neural Network-Based Observer Design for Switched Systems With Quantized Measurements

This study is concerned with the adaptive neural network (NN) observer design problem for continuous-time switched systems via quantized output signals. A novel NN observer is presented in which the adaptive laws are constructed using quantized measurements. Then, persistent dwell time (PDT) switchi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 34; no. 9; pp. 5897 - 5910
Main Authors: Chen, Liheng, Zhu, Yanzheng, Ahn, Choon Ki
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study is concerned with the adaptive neural network (NN) observer design problem for continuous-time switched systems via quantized output signals. A novel NN observer is presented in which the adaptive laws are constructed using quantized measurements. Then, persistent dwell time (PDT) switching is considered in the observer design to describe fast and slow switching in a unified framework. Accurate estimations of state and actuator efficiency factor can be obtained by the proposed observer technique despite actuator degradation. Finally, a simulation example is provided to illustrate the effectiveness of the developed NN observer design approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3131412