Speeding up single-query sampling-based algorithms using case-based reasoning

•Motion planning is an essential task for an autonomous vehicle.•Traditional motion planning algorithms ignore experience when serving new queries.•Experience-based algorithms use multiple thread execution for serving queries.•Motion planning belongs to P-SPACE hard problem class.•Case-based reasoni...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 114; s. 524 - 531
Hlavní autori: Abdelwahed, Mustafa F., Saleh, Mohamed, Mohamed, Amr E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 30.12.2018
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:•Motion planning is an essential task for an autonomous vehicle.•Traditional motion planning algorithms ignore experience when serving new queries.•Experience-based algorithms use multiple thread execution for serving queries.•Motion planning belongs to P-SPACE hard problem class.•Case-based reasoning is an AI approach for problem-solving using stored experiences. We present an extension to the single-query sampling-based algorithm for improving its response time using Case-Based Reasoning (CBR) technique. Unlike traditional experience-based planners, CBR depends on a single thread execution which reduces the required computation power. Additionally, it is always biased towards exploration rather than exploitation to overcome experience-based algorithms drawbacks. Results indicate that CBR extension has significantly improved sampling-based response time for similar served queries.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2018.08.035