Semi-supervised Deep Learning in Motor Imagery-Based Brain-Computer Interfaces with Stacked Variational Autoencoder

Recently, deep learning methods have contributed to the development of motor imagery (MI) based brain-computer interface (BCI) research. However, these methods typically focused on supervised deep learning with the labelled data and failed to learn from the unlabelled data, where additional informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 1631; H. 1; S. 12007 - 12014
Hauptverfasser: Chen, Junjian, Yu, Zhuliang, Gu, Zhenghui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.09.2020
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, deep learning methods have contributed to the development of motor imagery (MI) based brain-computer interface (BCI) research. However, these methods typically focused on supervised deep learning with the labelled data and failed to learn from the unlabelled data, where additional information may be critical for performance improvement in MI decoding. To address this problem, we propose a semi-supervised deep learning method based on the stacked variational autoencoder (SVAE) for MI decoding, where the input to the network is an envelope representation of EEG signal. Under the framework of SVAE, the labelled training data and unlabelled test data can be trained collaboratively. Experimental evaluation on the BCI IV 2a dataset reveals that SVAE outperforms competing methods and it also yields state-of-the-art performance in decoding MI tasks. Hence, the proposed method is a promising tool in the research of the MI-based BCI system.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1631/1/012007