Research on UAV image denoising effect based on improved Wavelet Threshold of BEMD
Aiming at the noise generated by external or internal factors reduces the sharpness of unmanned aerial vehicle (UAV) images, an improved bi-dimensional empirical mode decomposition (BEMD) de-noising algorithm is proposed to solve the problem. Firstly, an intrinsic mode function (IMF) is obtained aft...
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 1437; číslo 1; s. 12032 - 12043 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.01.2020
|
| Témata: | |
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Aiming at the noise generated by external or internal factors reduces the sharpness of unmanned aerial vehicle (UAV) images, an improved bi-dimensional empirical mode decomposition (BEMD) de-noising algorithm is proposed to solve the problem. Firstly, an intrinsic mode function (IMF) is obtained after BEMD decomposition of noisy image, and then the high frequency apply particle swarm optimization (PSO) after wavelet decomposition to the high-frequency IMF to obtain the optimal threshold filtering. As for the low frequency, it is filtered by the exponential attenuation threshold algorithm of wavelet semi-soft threshold. Finally, the filtered both high-frequency and low-frequency IMF are reconstructed after inverse wavelet transformation. This algorithm is applied to the processing of UAV images, and compared with the traditional UAV image denoising method and the advanced UAV image denoising method. Simulation results demonstrate that the proposed denoising method outperforms other de-noising methods in terms of peak signal-to-noise ratio and mean square error. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1742-6588 1742-6596 |
| DOI: | 10.1088/1742-6596/1437/1/012032 |