On Eigenfunction Expansion of Solutions to the Hamilton Equations

We establish a spectral representation for solutions to linear Hamilton equations with positive definite energy in a Hilbert space. Our approach is a special version of M. Krein’s spectral theory of J -selfadjoint operators in the Hilbert spaces with indefinite metric. Our main result is an applicat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics Vol. 154; no. 1-2; pp. 503 - 521
Main Authors: Komech, A., Kopylova, E.
Format: Journal Article
Language:English
Published: Boston Springer US 01.01.2014
Springer
Subjects:
ISSN:0022-4715, 1572-9613
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We establish a spectral representation for solutions to linear Hamilton equations with positive definite energy in a Hilbert space. Our approach is a special version of M. Krein’s spectral theory of J -selfadjoint operators in the Hilbert spaces with indefinite metric. Our main result is an application to the eigenfunction expansion for the linearized relativistic Ginzburg–Landau equation.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-013-0846-1