On Eigenfunction Expansion of Solutions to the Hamilton Equations
We establish a spectral representation for solutions to linear Hamilton equations with positive definite energy in a Hilbert space. Our approach is a special version of M. Krein’s spectral theory of J -selfadjoint operators in the Hilbert spaces with indefinite metric. Our main result is an applicat...
Uloženo v:
| Vydáno v: | Journal of statistical physics Ročník 154; číslo 1-2; s. 503 - 521 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.01.2014
Springer |
| Témata: | |
| ISSN: | 0022-4715, 1572-9613 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We establish a spectral representation for solutions to linear Hamilton equations with positive definite energy in a Hilbert space. Our approach is a special version of M. Krein’s spectral theory of
J
-selfadjoint operators in the Hilbert spaces with indefinite metric. Our main result is an application to the eigenfunction expansion for the linearized relativistic Ginzburg–Landau equation. |
|---|---|
| ISSN: | 0022-4715 1572-9613 |
| DOI: | 10.1007/s10955-013-0846-1 |