A Strategy for Global Convergence in a Sequential Quadratic Programming Algorithm
In a previous work [P. Boggs and J. Tolle, SIAM J. Numer. Anal., 21 (1984), pp. 1146-1161], the authors introduced a merit function for use with the sequential quadratic programming (SQP) algorithm for solving nonlinear programming problems. Here, further theoretical justification, including a globa...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 26; číslo 3; s. 600 - 623 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.06.1989
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In a previous work [P. Boggs and J. Tolle, SIAM J. Numer. Anal., 21 (1984), pp. 1146-1161], the authors introduced a merit function for use with the sequential quadratic programming (SQP) algorithm for solving nonlinear programming problems. Here, further theoretical justification, including a global convergence theorem, is provided. In addition, modifications are suggested that allow the efficient implementation of the merit function while maintaining the important convergence properties. Numerical results are presented demonstrating the effectiveness of the procedure. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0726036 |