A Strategy for Global Convergence in a Sequential Quadratic Programming Algorithm

In a previous work [P. Boggs and J. Tolle, SIAM J. Numer. Anal., 21 (1984), pp. 1146-1161], the authors introduced a merit function for use with the sequential quadratic programming (SQP) algorithm for solving nonlinear programming problems. Here, further theoretical justification, including a globa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis Jg. 26; H. 3; S. 600 - 623
Hauptverfasser: Boggs, Paul T., Tolle, Jon W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.06.1989
Schlagworte:
ISSN:0036-1429, 1095-7170
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a previous work [P. Boggs and J. Tolle, SIAM J. Numer. Anal., 21 (1984), pp. 1146-1161], the authors introduced a merit function for use with the sequential quadratic programming (SQP) algorithm for solving nonlinear programming problems. Here, further theoretical justification, including a global convergence theorem, is provided. In addition, modifications are suggested that allow the efficient implementation of the merit function while maintaining the important convergence properties. Numerical results are presented demonstrating the effectiveness of the procedure.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/0726036