Generative modeling via tensor train sketching

In this paper, we introduce a sketching algorithm for constructing a tensor train representation of a probability density from its samples. Our method deviates from the standard recursive SVD-based procedure for constructing a tensor train. Instead, we formulate and solve a sequence of small linear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied and computational harmonic analysis Ročník 67; číslo C; s. 101575
Hlavní autoři: Hur, YoonHaeng, Hoskins, Jeremy G., Lindsey, Michael, Stoudenmire, E.M., Khoo, Yuehaw
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.11.2023
Elsevier
Témata:
ISSN:1063-5203, 1096-603X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce a sketching algorithm for constructing a tensor train representation of a probability density from its samples. Our method deviates from the standard recursive SVD-based procedure for constructing a tensor train. Instead, we formulate and solve a sequence of small linear systems for the individual tensor train cores. This approach can avoid the curse of dimensionality that threatens both the algorithmic and sample complexities of the recovery problem. Specifically, for Markov models under natural conditions, we prove that the tensor cores can be recovered with a sample complexity that scales logarithmically in the dimensionality. Finally, we illustrate the performance of the method with several numerical experiments.
Bibliografie:None
USDOE Office of Science (SC)
SC0022232
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2023.101575