Solving a linear programming problem with the convex combination of the max–min and the max-average fuzzy relation equations

In this paper, we introduce a fuzzy operator constructed by the convex combination of two known operators, max–min and max-average compositions [H.J. Zimmermann, Fuzzy set theory and it’s application, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999]. This operator contains some propertie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 180; číslo 1; s. 411 - 418
Hlavní autoři: Ghodousian, A., Khorram, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.09.2006
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce a fuzzy operator constructed by the convex combination of two known operators, max–min and max-average compositions [H.J. Zimmermann, Fuzzy set theory and it’s application, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999]. This operator contains some properties of the two known compositions when it generates the feasible region for linear optimization problems. We investigate linear optimization problems whose feasible region is the fuzzy sets defined with this operator. Thus, firstly, the structure of these fuzzy regions is considered and then a method to solve the linear optimization problems with fuzzy equation constraints regarding this operator is presented.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2005.12.027