Application of honey-bee mating optimization algorithm on clustering

Cluster analysis is one of attractive data mining technique that use in many fields. One popular class of data clustering algorithms is the center based clustering algorithm. K-means used as a popular clustering method due to its simplicity and high speed in clustering large datasets. However, K-mea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 190; číslo 2; s. 1502 - 1513
Hlavní autori: Fathian, Mohammad, Amiri, Babak, Maroosi, Ali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 15.07.2007
Elsevier
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Cluster analysis is one of attractive data mining technique that use in many fields. One popular class of data clustering algorithms is the center based clustering algorithm. K-means used as a popular clustering method due to its simplicity and high speed in clustering large datasets. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. Over the last decade, modeling the behavior of social insects, such as ants and bees, for the purpose of search and problem solving has been the context of the emerging area of swarm intelligence. Honey-bees are among the most closely studied social insects. Honey-bee mating may also be considered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the process of marriage in real honey-bee. Honey-bee has been used to model agent-based systems. In this paper, we proposed application of honeybee mating optimization in clustering (HBMK-means). We compared HBMK-means with other heuristics algorithm in clustering, such as GA, SA, TS, and ACO, by implementing them on several well-known datasets. Our finding shows that the proposed algorithm works than the best one.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2007.02.029