Numerical solution for high order differential equations using a hybrid neural network—Optimization method

This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential equations. Here neural networks is considered as a part of large field called neural computing or soft computing. This means that we propose a ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 183; H. 1; S. 260 - 271
Hauptverfasser: Malek, A., Shekari Beidokhti, R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 01.12.2006
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential equations. Here neural networks is considered as a part of large field called neural computing or soft computing. This means that we propose a new solution method for the approximated solution of high order ordinary differential equations using innovative mathematical tools and neural-like systems of computation. This hybrid method can result in improved numerical methods for solving initial/boundary value problems, without using preassigned discretisation points. The mixture of feed forward neural networks and optimization techniques, based on Nelder–Mead method is used to introduce the close analytic form of the solution for the differential equation. Excellent test results are obtained for the solution of lower and higher order differential equations. The model finds approximation solution for the differential equation inside and outside the domain of consideration for the close enough neighborhood of initial/boundary points. Numerical examples are described to demonstrate the method.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2006.05.068