Fuzzy linear regression models with least square errors

To estimate the parameters of fuzzy linear regression models with fuzzy output and crisp inputs, we develop a mathematical programming model in this paper. The method is constructed on the basis of minimizing the square of the total difference between observed and estimated spread values or in other...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 163; číslo 2; s. 977 - 989
Hlavní autoři: Modarres, M., Nasrabadi, E., Nasrabadi, M.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 15.04.2005
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To estimate the parameters of fuzzy linear regression models with fuzzy output and crisp inputs, we develop a mathematical programming model in this paper. The method is constructed on the basis of minimizing the square of the total difference between observed and estimated spread values or in other words minimizing the least square errors. The advantage of the proposed approach is its simplicity in programming and computation as well as its performance. To compare the performance of the proposed approach with the other methods, two examples are presented.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2004.05.004