Fuzzy linear regression models with least square errors
To estimate the parameters of fuzzy linear regression models with fuzzy output and crisp inputs, we develop a mathematical programming model in this paper. The method is constructed on the basis of minimizing the square of the total difference between observed and estimated spread values or in other...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 163; H. 2; S. 977 - 989 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
Elsevier Inc
15.04.2005
Elsevier |
| Schlagworte: | |
| ISSN: | 0096-3003, 1873-5649 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | To estimate the parameters of fuzzy linear regression models with fuzzy output and crisp inputs, we develop a mathematical programming model in this paper. The method is constructed on the basis of minimizing the square of the total difference between observed and estimated spread values or in other words minimizing the least square errors. The advantage of the proposed approach is its simplicity in programming and computation as well as its performance. To compare the performance of the proposed approach with the other methods, two examples are presented. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2004.05.004 |