Fuzzy linear regression models with least square errors

To estimate the parameters of fuzzy linear regression models with fuzzy output and crisp inputs, we develop a mathematical programming model in this paper. The method is constructed on the basis of minimizing the square of the total difference between observed and estimated spread values or in other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 163; H. 2; S. 977 - 989
Hauptverfasser: Modarres, M., Nasrabadi, E., Nasrabadi, M.M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 15.04.2005
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To estimate the parameters of fuzzy linear regression models with fuzzy output and crisp inputs, we develop a mathematical programming model in this paper. The method is constructed on the basis of minimizing the square of the total difference between observed and estimated spread values or in other words minimizing the least square errors. The advantage of the proposed approach is its simplicity in programming and computation as well as its performance. To compare the performance of the proposed approach with the other methods, two examples are presented.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2004.05.004