Fuzzy linear regression models with least square errors

To estimate the parameters of fuzzy linear regression models with fuzzy output and crisp inputs, we develop a mathematical programming model in this paper. The method is constructed on the basis of minimizing the square of the total difference between observed and estimated spread values or in other...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 163; číslo 2; s. 977 - 989
Hlavní autori: Modarres, M., Nasrabadi, E., Nasrabadi, M.M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 15.04.2005
Elsevier
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To estimate the parameters of fuzzy linear regression models with fuzzy output and crisp inputs, we develop a mathematical programming model in this paper. The method is constructed on the basis of minimizing the square of the total difference between observed and estimated spread values or in other words minimizing the least square errors. The advantage of the proposed approach is its simplicity in programming and computation as well as its performance. To compare the performance of the proposed approach with the other methods, two examples are presented.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2004.05.004