Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming

In this paper, we present a new hybrid algorithm for convex Mixed Integer Nonlinear Programming (MINLP). The proposed hybrid algorithm is an improved version of the classical nonlinear branch-and-bound (BB) procedure, where the enhancements are obtained with the application of the outer approximatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 60; číslo 2; s. 373 - 389
Hlavní autori: Melo, Wendel, Fampa, Marcia, Raupp, Fernanda
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.10.2014
Springer
Predmet:
ISSN:0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present a new hybrid algorithm for convex Mixed Integer Nonlinear Programming (MINLP). The proposed hybrid algorithm is an improved version of the classical nonlinear branch-and-bound (BB) procedure, where the enhancements are obtained with the application of the outer approximation algorithm on some nodes of the enumeration tree. The two methods are combined in such a way that each one collaborates to the convergence of the other. Computational experiments with benchmark instances of the MINLP problem show the good performance of the proposed algorithm, which is compared to the outer approximation algorithm, the nonlinear BB algorithm and the hybrid algorithm implemented in the solver Bonmin.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-014-0217-8