Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming
In this paper, we present a new hybrid algorithm for convex Mixed Integer Nonlinear Programming (MINLP). The proposed hybrid algorithm is an improved version of the classical nonlinear branch-and-bound (BB) procedure, where the enhancements are obtained with the application of the outer approximatio...
Uložené v:
| Vydané v: | Journal of global optimization Ročník 60; číslo 2; s. 373 - 389 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.10.2014
Springer |
| Predmet: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we present a new hybrid algorithm for convex Mixed Integer Nonlinear Programming (MINLP). The proposed hybrid algorithm is an improved version of the classical nonlinear branch-and-bound (BB) procedure, where the enhancements are obtained with the application of the outer approximation algorithm on some nodes of the enumeration tree. The two methods are combined in such a way that each one collaborates to the convergence of the other. Computational experiments with benchmark instances of the MINLP problem show the good performance of the proposed algorithm, which is compared to the outer approximation algorithm, the nonlinear BB algorithm and the hybrid algorithm implemented in the solver Bonmin. |
|---|---|
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-014-0217-8 |